
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Searching for violation of safety and liveness properties using knowledge
discovery in complex systems specified through graph transformations

Einollah Piraa, Vahid Rafea,⁎, Amin Nikanjamb

a Department of Computer Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran
b Faculty of Computer Engineering, K.N. Toosi University of Technology, Tehran 1631714191, Iran

A R T I C L E I N F O

Keywords:
Data mining
Bayesian network
Model checking
State space explosion
Graph transformation system

A B S T R A C T

Context: Model checking is an automatic and precise technique in verification and refutation of software and
hardware systems. Despite its advantages, the state space explosion problem may occur in large and complex
systems. Recent studies demonstrate that using meta-heuristic and evolutionary algorithms are a proper solution
to handle the state space explosion problem. In systems which are specified formally through graph transfor-
mations, the state space is constructed by applying all enable rules on all generated states. In such systems, there
is a dependency between rules in each sequence of applied rules in the state space.
Objective: This fact motivates us to use knowledge discovery techniques to intelligently explore only a portion of
the state space instead of exhaustive exploration. We propose two different techniques to acquire such knowl-
edge form the model state space. In this paper, we propose a data mining-based approach in which the required
knowledge is obtained from exploring a slight portion of the model state space. Another approach is proposed in
which a Bayesian network is used to capture this knowledge. After acquiring the required knowledge, it is
employed to explore only a portion of the model state space intelligently, to refute a property.
Results: The proposed approaches can be used to analyze the reachability, safety and liveness properties. To
evaluate the proposed approaches, they are implemented in GROOVE, an open source toolset for designing and
model checking of systems specified through graph transformations.
Conclusion: Experimental results on different set of benchmarks show that the proposed approaches are faster
and more accurate in comparison with the existing meta-heuristic and evolutionary techniques in model
checking of complex software systems specified through graph transformations.

1. Introduction

Model checking is now increasingly used as one of the well-known
techniques in formal verification of different systems, such as circuits
[1], the verification of various network or safety protocols [2], or the
formal verification of program languages, such as C [3] or Java [4].
Also, it has been employed as a fitness function in genetic programming
(GP) to automatic repair of software systems [5]. In model checking, all
possible states (called state space) of a system are generated and then a
given property is checked. If the system has a very large or infinite state
space, the state space cannot be explored completely and the state space
explosion problem will occur [6]. Recent studies demonstrate that using
meta-heuristic and evolutionary algorithms such as Genetic Algorithm
(GA) [7], Ant Colony Optimization (ACO) [8,9] and Particle Swarm
Optimization (PSO) [10] can be a proper solution to handle the state
space explosion problem. These approaches explore only a portion of
the state space to verify (or refute) the given property intelligently.

Although useful, these approaches might be unsuccessful in very large
and complex systems. In systems which are specified formally through
graph transformations, the state space is constructed by applying all
enable rules on all generated states. In such systems, there is a de-
pendency between rules in each ordered sequence of applied rules in
the state space. Specially, some of these ordered sequences of rules are
frequently appeared in different parts of the state space. This fact mo-
tivates us to use knowledge discovery techniques to intelligently ex-
plore only a portion of the state space instead of exhaustive exploration.
In [11], a data mining-based approach was proposed to handle this
problem. In the approach, to check complex and large models in-
telligently, a special knowledge (i.e. a frequent pattern) is obtained
from checking some smaller models. This approach can work success-
fully when the large and corresponding smaller models are consistent
with the same architectural styles. Additionally, generating an adequate
smaller model in a specific style, especially in real and complex sys-
tems, can be a critical bottleneck.

https://doi.org/10.1016/j.infsof.2018.01.004
Received 14 May 2017; Received in revised form 3 December 2017; Accepted 8 January 2018

⁎ Corresponding author.
E-mail addresses: piraep@gmail.com (E. Pira), v-rafe@araku.ac.ir (V. Rafe), nikanjam@kntu.ac.ir (A. Nikanjam).

Information and Software Technology 97 (2018) 110–134

Available online 31 January 2018
0950-5849/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.01.004
https://doi.org/10.1016/j.infsof.2018.01.004
mailto:piraep@gmail.com
mailto:v-rafe@araku.ac.ir
mailto:nikanjam@kntu.ac.ir
https://doi.org/10.1016/j.infsof.2018.01.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2018.01.004&domain=pdf


In this paper, to alleviate this bottleneck, we propose an approach in
which the required knowledge is acquired from exploring a slight
portion of the model's state space instead of exhaustive exploration of
the smaller model. In other words, the specific number of states is firstly
explored by Breadth-First Search (BFS) algorithm and then the number
of states is selected from the last level of the explored state space. These
selected states (called promising states) have more chance than other
states to reach a goal state (i.e. a state in which a given state property is
satisfied or refuted). In our approach, all paths starting from an initial
state of the state space and leading to a promising state are considered
as a training dataset. To discover the required knowledge from this
training dataset, similar to [11], we employ data mining techniques to
detect a frequent pattern. This pattern is a sequence of rules which
appears in the training dataset with frequency no less than a specific
threshold [12]. There is a high probability that the repetition of ap-
plying this sequence of rules on promising states can cause a goal state
to be reached sooner. Furthermore, it is highly probable that there are
some dependencies between the applied rules in the training dataset.
Since using Bayesian networks (BNs) is one way to capture these

dependencies, we propose another approach in which a BN stores the
existing dependencies. BN is a probabilistic model which is used to
capture dependencies/independencies between variables of the pro-
blem [13]. After discovering a set of frequent patterns or constructing a
BN, it can be used to explore the remainder of the model's state space
intelligently until a goal state is reached.

The main contributions of the proposed approaches are as follows:
(1) Using BNs and data mining to analyze the reachability properties
and this capability is used to refute the safety properties. Also, they can
detect a deadlock, a state with no subsequent state. Furthermore, they
can refute the liveness properties. (2) They can analyze complex sys-
tems with very large state spaces in comparison with other existing
meta-heuristic and evolutionary approaches and finally, (3) They can
generate short counterexamples/witnesses.

In model checking, a system should be described by a formal
modeling language. One of the proper formal languages is Graph
Transformation System (GTS) [14]. In a system modeled by GTS,
structural and behavioral aspects can be represented by graphs and
graph transformations respectively. There are different tools such as

(a) (b)

n4
Process

idle

n5
Process

idle

n6
Process

idle

n7
Process

idle

n8
Memory

free

n9
Memory

free

n10
CPU
free

n11
I/O
free

n3

Process
idle

active
ready

running
waiting
exeIO
isRun

sopping

CPU
free
busy

n0
n1

n2
hold

I/O
free
busy

Memory
free
busy

hold

hold

Fig. 1. The type and host graphs of the model of the process life cycle problem designed in GROOVE.

Fig. 2. An example of a transformation rule and a state property in the model designed by GROOVE.

E. Pira et al. Information and Software Technology 97 (2018) 110–134

111



Download English Version:

https://daneshyari.com/en/article/6948079

Download Persian Version:

https://daneshyari.com/article/6948079

Daneshyari.com

https://daneshyari.com/en/article/6948079
https://daneshyari.com/article/6948079
https://daneshyari.com

