
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

A framework for the recovery and visualization of system availability
scenarios from execution traces

Jameleddine Hassine⁎,a, Abdelwahab Hamou-Lhadjb, Luay Alawnehc

a Department of Information and Computer Science, King Fahd University of Petroleum and Minerals, Dhahran, KSA
b Electrical and Computer Engineering Department, Concordia University, Montréal, Canada
c Department of Software Engineering, Jordan University of Science and Technology, Irbid, Jordan

A R T I C L E I N F O

Keywords:
Non-functional requirements
Dynamic analysis
Availability
Use case maps
Log filtering
Log segmentation

A B S T R A C T

Context: Dynamic analysis is typically concerned with the analysis of system functional aspects at run time.
However, less work has been devoted to the dynamic analysis of software quality attributes. The recovery of
availability scenarios from system execution traces is particularly important for critical systems to verify that the
running implementation supports and complies with availability requirements, especially if the source code is
not available (e.g., in legacy systems) and after the system has undergone several ad-hoc maintenance tasks.
Objective: Propose a dynamic analysis approach, along with tool support, to recover availability scenarios, from
system execution traces running high availability features.
Method: Native execution traces, collected from systems running high availability features, are pre-processed,
filtered, merged, and segmented into execution phases. The segmented scenarios are then visualized, at a high
level of abstraction, using the ITU-T standard Use Case Maps (UCM) language extended with availability an-
notations.
Results: The applicability of our proposed approach has been demonstrated by implementing it as a prototype
feature within the jUCMNav tool and by applying it to four real-world systems running high availability features.
Furthermore, we have conducted an empirical study to prove that resulting UCM models improve the under-
standability of log files that contain high availability features.
Conclusion: We have proposed a framework to filter, merge, segment, and visualize native log traces. The fra-
mework presents the following benefits: (1) it offers analysts the flexibility to specify what to include/exclude
from an execution trace, (2) it provides a log segmentation method based on the type of information reported in
the execution trace, (3) it uses the UCM language to visually describe availability scenarios at a high level of
abstraction, and (4) it offers a scalable solution for the visualization problem through the use of the UCM stub-
plug-in concept.

1. Introduction

Software comprehension is an essential part of software main-
tenance. Gaining a sufficient level of understanding of a software
system to perform a maintenance task is time consuming and requires
studying various software artifacts (e.g., source code, documentation,
etc.) [1]. However, in practice most of the existing systems have poor
and/or outdated documentation, if it exists at all. One common ap-
proach for understanding system behavior is to analyze its run-time
behavior, also known as dynamic analysis [1].

Dynamic analysis is typically concerned with the analysis of system
behavioral aspects at run time [2]. This type of analysis does not re-
quire the availability of source code, although it may make use of it

(e.g., through instrumentation) when present. A trace or a log is a se-
quential set of events captured during any particular run of software
execution. For example, a trace/log can capture software execution
paths, events triggered during software execution, or user activity. In
this paper, the terms traces and logs are used interchangeably.

Non-functional requirements (NFRs), e.g., availability, security,
etc., are critical to the success of almost every nontrivial software
system. While the dynamic analysis of software functional properties
has been widely studied, there is much less work covering the dynamic
analysis of software quality attributes. The widespread interest in dy-
namic analysis of software quality attributes provides the major moti-
vation of this research. We, in particular, focus on dynamic analysis of
availability quality attribute.

https://doi.org/10.1016/j.infsof.2017.11.007
Received 9 April 2017; Received in revised form 11 September 2017; Accepted 13 November 2017

⁎ Corresponding author.
E-mail addresses: jhassine@kfupm.edu.sa (J. Hassine), abdelw@ece.concordia.ca (A. Hamou-Lhadj), lmalawneh@just.edu.jo (L. Alawneh).

Information and Software Technology 96 (2018) 78–93

Available online 21 November 2017
0950-5849/ © 2017 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2017.11.007
https://doi.org/10.1016/j.infsof.2017.11.007
mailto:jhassine@kfupm.edu.sa
mailto:abdelw@ece.concordia.ca
mailto:lmalawneh@just.edu.jo
https://doi.org/10.1016/j.infsof.2017.11.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2017.11.007&domain=pdf


Several definitions of availability have been proposed [3–6]. Ac-
cording to ANSI [3], the availability of a system may be defined as the
degree to which a system or a component is operational and accessible
when required for use. The ITU-T recommendation E.800 [5] defines
availability, as the ability of an item to be in a state to perform a re-
quired function at a given instant of time, or at any instant of time
within a given time interval, assuming that the external resources, if
required, are provided. Avizienis et al. [4] defined the availability of a
system as being the readiness for a correct service. Jalote [6] deemed
system availability to be built upon the concept of system reliability by
adding the notion of recovery, which may be accomplished by fault
masking, repair, or component redundancy.

Bass et al. [7] defined a template, for a general availability scenario,
composed of six attributes, namely, Source (e.g., internal/external to the
system), Stimulus (e.g., type of fault such as crash, timing, etc.), Artifact
(e.g., system’s processors, communication channels, etc.), Environment
(e.g., normal operation, degraded mode), Response (system should de-
tect event then react to it by performing one or more of the following:
record it, notify appropriate parties, disable sources of events that
caused the fault/failure, be unavailable for a pre-specified interval, and
continue to operate in normal or degraded mode), Response Measure
(e.g., time interval when the system must be available, repair time,
etc.). For example, when an unanticipated external message (i.e., Sti-
mulus) is received by a process (i.e., Artifact) during normal operation
(i.e., Environment), the process informs the operator (i.e., Response) of
the receipt of the message and continues to operate with no downtime
(i.e., Response Measure) [7]. It is worth noting that not every availability
scenario has all of the six attributes [7]. Only the attributes that are
necessary to the achievement of the scenario should be specified.

In this research, we define the availability scenario as the sequence
of events resulting from the execution of a system high availability (HA)
feature. In fact, the triggering of an HA feature within a system or a
component (i.e., Artifact), starts with the detection of a fault
(i.e., Stimulus), and leads to a set of events/actions (i.e., Response). For
example, when a process (i.e., Artifact) in Cisco IOS XRv operating
system crashes (i.e., Stimulus), the process restartability feature re-
spawns (i.e., Response) the crashed process. As a result, the process
resumes its normal routine. Section 5.1.4 provides a detailed descrip-
tion of this specific scenario.

We, in particular, focus on recovering availability scenarios from
system execution traces. This is particularly important for critical sys-
tems to verify that the running implementation supports availability
requirements, especially if the source code is not available (e.g., in le-
gacy systems) and after the system has undergone several ad-hoc
maintenance tasks.

In this paper, we extend and build upon our preliminary work [8]
on recovering system availability features from execution traces.

The key contributions of this paper are as follows:

1. It proposes a dynamic analysis framework to recover availability
scenarios from system execution traces. The proposed framework
does not require the availability of system source code and uses the
natively generated log data as a basis for availability scenarios re-
covery. Our approach proposes a trace abstraction technique that
filters and segments a single or many consolidated execution traces
into clusters representing execution phases that describe the exe-
cuted scenario of the high availability feature.

2. It uses the Use Case Maps (UCM) language, part of the ITU-T User
Requirements Notation (URN) [9] standard, to visualize the system
availability features that have been recovered from the execution
traces. The resulting UCM models have been extended with avail-
ability annotations (e.g., exception paths, metadata attributes, etc.).

3. It provides a prototype tool that automates the filtering, segmenta-
tion, and visualization of the recovered high availability scenarios.
Our prototype is implemented as a feature within the jUCMNav [10]
tool (see Section 4.4).

4. It demonstrates the feasibility of the proposed approach by applying
it to four real-world case studies: (1) Cisco HSRP (Hot Standby
Router Protocol) redundancy protocol, (2) Cisco ASA firewall ac-
tive/standby redundancy feature, (3) Cisco ASR 9000 RSP stateful
switchover feature, and (4) Cisco IOS-XRv process restartability.

5. We conducted an empirical validation to prove that the use of the
proposed approach improves the understandability of execution
traces that contain high availability features. The collected data is
statistically analyzed using proven statistical methods, such as t-
test [11].

The remainder of this paper is organized as follows. The next section
presents and discusses the related work. Section 3 introduces briefly the
Use Case Maps language and a subset of its availability annotations. Our
proposed approach for the recovery of availability scenarios from ex-
ecution traces is presented in Section 4. In Section 5, we present and
discuss the empirical validation of our approach. A discussion of the
benefits and limitations of our approach and a presentation of the
threats to validity is provided in Section 6. Finally, conclusions and
future work are presented in Section 7.

2. Related work

In this section, we survey the literature related to: (1) trace ab-
straction, (2) trace analysis, with a focus on non-functional require-
ments, and (3) trace visualization.

2.1. Trace abstraction

Traces tend to be extraordinary large and contain a lot of noise,
which often hinders viable analysis (see [12] for a discussion on trace
complexity). To address this issue, many trace abstraction and simpli-
fication techniques have been proposed with a common objective being
to extract high-level views from raw traces (e.g., [13,14]). Cornelissen
et al. [14] used a filtering approach for abstracting scenario diagrams
by removing events that take place at nesting levels higher than a
certain threshold. Kuhn et al. [15] also used a minimal nesting level
threshold as one of several filtering criteria to reduce trace size. Hamou-
Lhadj et al. [16] proposed a so called utilityhood metric to measure the
extent to which an event can be considered as a utility or not. They
proposed a trace abstraction technique based on the automatic removal
of utilities.

Filtering-based techniques have been augmented with pattern de-
tection to better characterize the main content of a trace. Hamou-Lhadj
et al. [17], for example, proposed an approach to group similar (but not
necessarily identical) sequences of trace events into patterns. Their
argument is that users who browse a trace only need to look at the same
patterns once. This decreases the time and effort spent exploring the
trace. Another approach by the same authors consists of summarizing
the content of large traces [18]. The idea is to use static analysis to
measure various properties of trace elements (e.g., number of callees,
callers, etc.) and rank the trace elements according to their relevance.
Trace summaries contain elements that have high ranking.

Other researchers have proposed the use of sampling techniques to
reduce the size of traces (e.g., [13,19,20]) just as it is used to reduce
data in traditional information theory. Sampling consists of selecting
parts of the trace. Chan et al. [20] proposed a random sampling ap-
proach in which every Nth generated event is selected. The problem
with this technique is that it might miss important information. It is also
hard to generalize. In addition, there is no guarantee that the resulting
sample is representative of the original trace. Pirzadeh et al. [13]
proposed a rather novel trace sampling approach based on the concept
of execution phases [19]. First, the trace is segmented into phases,
which can then be used as strata to guide the sampling process. The
resulting trace (i.e., the sample) captures all key characteristic of the
trace. In this research, we also use trace segmentation in the recovery of

J. Hassine et al. Information and Software Technology 96 (2018) 78–93

79



Download English Version:

https://daneshyari.com/en/article/6948094

Download Persian Version:

https://daneshyari.com/article/6948094

Daneshyari.com

https://daneshyari.com/en/article/6948094
https://daneshyari.com/article/6948094
https://daneshyari.com

