
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

An empirical study to improve software security through the application of
code refactoring

Haris Mumtaz, Mohammad Alshayeb*, Sajjad Mahmood, Mahmood Niazi
Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

A R T I C L E I N F O

Keywords:
Refactoring
Secured software
Empirical study
Code bad smells

A B S T R A C T

Context: Code bad smells indicate design flaws that can degrade the quality of software and can potentially lead
to the introduction of faults. They can be eradicated by applying refactoring techniques. Code bad smells that
impact the security perspective of software should be detected and removed from their code base. However, the
existing literature is insufficient to support this claim and there are few studies that empirically investigate bad
smells and refactoring opportunities from a security perspective.
Objective: In this paper, we investigate how refactoring can improve the security of an application by removing
code bad smell.
Method: We analyzed three different code bad smells in five software systems. First, the identified code bad
smells are filtered against security attributes. Next, the object-oriented design and security metrics are calculated
for the five investigated systems. Later, refactoring is applied to remove security-related code bad smells. The
correctness of detection and refactoring of investigated code smells are then validated. Finally, both traditional
object-oriented and security metrics are again calculated after removing bad smells to assess its impact on the
design and security attributes of systems.
Results: We found ‘feature envy’ to be the most abundant security bad smell in investigated projects. The ‘move
method’ and ‘move field’ are commonly applied refactoring techniques because of the abundance of feature
envy.
Conclusion: The results of security metrics indicate that refactoring helps improve the security of an application
without compromising the overall quality of software systems.

1. Introduction

Code bad smells indicate poor coding and design choices that can
directly or indirectly lead to the introduction of faults [1–3]. Code bad
smells impact the structural characteristics of software such that they
contribute to degrading the quality of the software [1,2]. Refactoring is
a widely used technique to improve the quality of software while pre-
serving the functionalities and behavior [2]. Several studies have been
proposed for bad smell detection and subsequent refactoring to improve
code quality aspects such as understandability, changeability and
overall maintenance [4]. Bavota et al. investigated the bad test code
smells [5].

Security is an important software quality aspect that reflects the
ability of a system to prevent data exposure and loss of information. A
basic aim of secure software is to prevent unauthorized access and
modification of information. The fulfillment of security requirements at
the design and implementation level is imperative to minify the cost of
addressing this issue at later stages of development and maintenance.

Similar to other quality attributes, it is important to evaluate how code
bad smells affect the security of software. Furthermore, there is a need
to investigate whether refactoring techniques help improve the security
of software by removing code bad smells. Security itself is a wide do-
main and its applicability is varied and context dependent. In the cur-
rent study context, we investigate whether source code fragments face
security issues and if they violate security requirements. The confine-
ment of our study to source code has allowed us to infer the security
requirements in a manner to show their applicability to source code.
The detected bad smells in our study are rigorously analyzed against
security requirements to deduce with certainty about the effect of bad
smells from a security perspective. In our study, the bad smells violating
security requirements are referred to as “security bad smells”. Previous
studies have rigorously examined the relations between individual code
bad smells and quality attributes such as maintenance effort and defect
prediction [4]; yet no study has investigated how refactoring can im-
prove software security by detecting and removing code bad smells.

This paper empirically investigates how refactoring can improve the

https://doi.org/10.1016/j.infsof.2017.11.010
Received 22 November 2016; Received in revised form 13 August 2017; Accepted 18 November 2017

⁎ Corresponding author.
E-mail addresses: g201405820@kfupm.edu.sa (H. Mumtaz), alshayeb@kfupm.edu.sa (M. Alshayeb), smahmood@kfupm.edu.sa (S. Mahmood), mkniazi@kfupm.edu.sa (M. Niazi).

Information and Software Technology 96 (2018) 112–125

Available online 22 November 2017
0950-5849/ © 2017 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2017.11.010
https://doi.org/10.1016/j.infsof.2017.11.010
mailto:g201405820@kfupm.edu.sa
mailto:alshayeb@kfupm.edu.sa
mailto:smahmood@kfupm.edu.sa
mailto:mkniazi@kfupm.edu.sa
https://doi.org/10.1016/j.infsof.2017.11.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2017.11.010&domain=pdf


security of an application by removing code bad smells. The study
follows the guidelines provided by Jedlitschka et al. [6]. We report on
four open source and one student projects. We used inFusion [7], a well-
known bad smell detection tool [8–14], that has the ability to detect
more than 20 design flaws and code smells. In this paper, we used in-
Fusion for its ability to detect the investigated bad smells. The identi-
fied code bad smells are automatically removed using the IntelliJIDEA
tool. Subsequently, security metrics data is used to determine the pre-
sence of security concerns in the analyzed projects and to assess the
impact of refactoring on the design and security attributes.

The rest of the paper is structured as follows: Section 2 provides a
preliminary understanding of security characteristics and the code re-
factoring process. Section 3 provides a detailed description of the re-
lated work in terms of code bad smells, security aspects of software
development, metrics-based bad smell detection and refactoring tech-
niques. Section 4 specifies the research question based on the problem
statement identified from the gaps in the current literature. It also
highlights the basic components of our research methodology. Section 5
provides details on the experimental design. The analysis and discus-
sion on the obtained results are presented in Section 6. Section 7
identifies the threats to validity of this research and finally, Section 8
concludes the paper and provides the future research directions.

2. Background

This section provides a discussion on security characteristics. It also
illustrates the refactoring process applied to deal with code bad smells.
A brief discussion on existing refactoring tools is also covered in this
section.

2.1. Security characteristics

A variety of software quality characteristics has been reported in the
literature such as: performance, scalability, modifiability, security,
availability, integration, portability and testability [15]. The measure-
ment strategies have also been studied for these quality attributes in
object-oriented code [16–18]. One of the renowned methods to mea-
sure software quality attributes is object-oriented metrics analysis. Se-
curity is one of the important quality attributes in software systems. The
most common factors to measure security are: confidentiality, integrity
and availability [15,19–21]. These security measurement factors,
however, are subjective in nature and trivial to quantify.

According to Whitman and Mattord [21], information security is to
protect the storage, processing and exchange of information from
confidentiality, integrity and availability perspectives. These three
perspectives are major components of ensuring security. When in-
formation is protected from unauthorized access, it means con-
fidentiality is ensured [21]. The integrity of information is compro-
mised when information is exposed to damage, corruption or any kind
of disruption [21]. This security metric affects consistency, complete-
ness and correctness attributes of software quality [22]. The third major
security attribute is availability, which means that data and services are
available to authorized users at all times [21]. Jürjens listed some ad-
ditional security characteristics including: fair exchange, non-repudia-
tion, role-based access control, secure communication links, secrecy

and integrity, authenticity, freshness, secure information flow and
guarded access [19]. Gorton also reported some requirements that a
software system should encapsulate to ensure security. The identified
requirements include: authentication, authorization, encryption, in-
tegrity and non-repudiation [15].

2.2. Code refactoring process and tools

Software refactoring means that software design or code is trans-
formed in such a way that it improves software quality while preserving
its behavior [2]. Opdyke introduced the refactoring concept and pro-
posed several refactoring opportunities at both the design and im-
plementation level [23].

Refactoring is usually conducted as a standard process for model
and source code, comprising several steps. The process was initially
presented by Wake [24], and further extended by Mens and Tourwé
[25]. In general, the code refactoring process comprises the following
steps:

Step 1: Identifying software parts that require refactoring.
Step 2: Selecting the appropriate refactoring approach.
Step 3: Checking for behavioral preservation.
Step 4: Applying the selected refactoring approach.
Step 5: Analyzing the impact of refactoring on software quality
improvement.
Step 6: Ensuring consistency between the refactored code and the
corresponding UML class model.

The details related to steps 1 and 2 are provided in Section 3.3. The
discussion related to metrics-based detection techniques basically de-
scribes different ways of capturing portions of software which require
refactoring. The third step focuses on code behavioral preservation
before it is exposed to refactoring. One way of achieving behavioral
preservation is by defining the pre- and post-conditions of refactoring
[23,26]. Opdyke [23] used the assistance of preconditions to ensure
behavioral preservation in code that is targeted to be refactored. Pre-
conditions basically ensure that refactored code preserves its behavior.
But it is achieved with additional overhead cost to the refactoring
process. Roberts [26] intended to verify behavioral preservation with
the use of post-conditions. The reason for considering post-conditions
instead of preconditions was the belief in delaying the refactoring
process, because undertaking the verification activity before refactoring
would certainly delay the refactoring activity.

The application of code refactoring can be achieved manually, in a
semi-automated manner or a fully-automated manner. Many code re-
factoring tools are available and are listed in Table 1 with the available
refactoring strategies.

The next stage of the refactoring process is the evaluation of cor-
rected code to assess the improvement in quality. Although evaluation
of refactored code is an imperative activity, unfortunately only a few
studies have actually focused on it [30]. The researchers mainly use
software metrics to make judgments on quality improvement [31–33].
The metrics values are calculated before and after refactoring to assess
the impact of refactoring on code quality. Enckevort [31] used Fan-in,
Fan-out and CK metrics [34] to quantify code quality. Moghadam and

Table 1
Refactoring tools.

Tool Refactoring strategies

InterlliJ IDEA [27] Rename and Move Program Entities, Change Method Signature, Extract Method, Inline Method, Introduce Variable, Introduce Field, Inline Local Variable,
Extract Interface, Extract Superclass, Encapsulate Fields, Pull Up Members, Push Down Members and Replace Inheritance with Delegation.

RefactorIt [28] Rename, Move Class, Move Method, Encapsulate Field, Create Factory Method, Extract Method, Extract Superclass/Interface, Minimize Access Rights, Clean
Imports, Create Constructor and Pull Up/Push Down Members.

JRefactory [29] Move Class, Rename Class, Add an Abstract Superclass, Remove Class, Push Up Field, Pull Down Field and Move Method.

H. Mumtaz et al. Information and Software Technology 96 (2018) 112–125

113



Download English Version:

https://daneshyari.com/en/article/6948097

Download Persian Version:

https://daneshyari.com/article/6948097

Daneshyari.com

https://daneshyari.com/en/article/6948097
https://daneshyari.com/article/6948097
https://daneshyari.com

