
ARTICLE IN PRESS

JID: INFSOF [m5G; September 11, 2017;12:1]

Information and Software Technology 0 0 0 (2017) 1–14

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Beyond evolutionary algorithms for search-based software engineering

Jianfeng Chen, Vivek Nair ∗, Tim Menzies

Department of Computer Science, North Carolina State University, Raleigh, NC, USA

a r t i c l e i n f o

Article history:

Received 25 January 2017

Revised 29 July 2017

Accepted 16 August 2017

Available online xxx

a b s t r a c t

Context: Evolutionary algorithms typically require large number of evaluations (of solutions) to converge

– which can be very slow and expensive to evaluate.

Objective: To solve search-based software engineering (SE) problems, using fewer evaluations than evo-

lutionary methods.

Method: Instead of mutating a small population, we build a very large initial population which is then

culled using a recursive bi-clustering chop approach. We evaluate this approach on multiple SE mod-

els, unconstrained as well as constrained, and compare its performance with standard evolutionary algo-

rithms.

Results: Using just a few evaluations (under 100), we can obtain comparable results to state-of-the-art

evolutionary algorithms.

Conclusion: Just because something works, and is widespread use, does not necessarily mean that there

is no value in seeking methods to improve that method. Before undertaking search-based SE optimization

tasks using traditional EAs, it is recommended to try other techniques, like those explored here, to obtain

the same results with fewer evaluations.

© 2017 Published by Elsevier B.V.

1. Introduction

Due to the complexities of software architectures and share-

holder requirements, it is often hard to solve complex model-

ing problems via a standard numerical mathematical analysis or

some deterministic algorithms [25] . There are many reasons for

this complexity:

• When procedural code is used within the model of a domain,

every “if” statement can divide the internal problem space into

different regions (once for each branch in the “if”). Such soft-

ware models cannot be optimized via traditional numerical

methods which assume models are a single continuous differ-

entiable function.

• Finding solutions to problems often means accommodating

competing choices. When stakeholders propose multiple goals,

search-based SE (SBSE) methods can reflect on goal interactions

to propose novel solutions to hard optimization problems such

as configuring products in complex product lines [55] , tuning

parameters of a data miner [59] , or finding best configurations

for clone detection algorithms [63] .

∗ Corresponding author.

E-mail addresses: jchen37@ncsu.edu (J. Chen), vivekaxl@gmail.com ,

vnair2@ncsu.edu (V. Nair), tim.menzies@gmail.com , tim@menzies.us (T. Menzies).

For these tasks, many SBSE researchers usually use evolutionary

algorithms (EA) [55,59,63] . Evolutionary algorithms start by gener-

ating a set of initial solutions and improve them through crossover

and mutation, also known as reproduction operators. They are in-

spired by evolution in nature and make no parametric assumptions

about problems being generated. In our experience, this has made

them particularly well-suited for SE problems. However, evolution-

ary algorithms typically require large number of evaluations (of so-

lutions) to converge. Real-world model-based applications may be

very expensive to evaluate (with respect to computation time, re-

sources required etc.).

So, can we do better than EA for SBSE? Or, are there faster al-

ternatives to EA? This paper experimentally evaluates one such al-

ternative called SWAY (short for the S ampling WAY):

1. Similar to a standard EA, generate an initial population;

2. Intelligently select a cluster within the population generated

with best scores.

SWAY runs so fast since it terminates after just O (lg N) evalu-

ations of N candidate solutions. SWAY’s intelligent selection mech-

anism for exploring subsets of the population is a recursive binary

chop that (i) finds and evaluates only the two most dissimilar ex-

amples, then (ii) recurses only on half of the data containing the

better among its similar example. As shown later in this paper, for

this process to work, it is important to have the right definition of

“dissimilar”.

http://dx.doi.org/10.1016/j.infsof.2017.08.007

0950-5849/© 2017 Published by Elsevier B.V.

Please cite this article as: J. Chen et al., Beyond evolutionary algorithms for search-based software engineering, Information and Software

Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.08.007

http://dx.doi.org/10.1016/j.infsof.2017.08.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:jchen37@ncsu.edu
mailto:vivekaxl@gmail.com
mailto:vnair2@ncsu.edu
mailto:tim.menzies@gmail.com
mailto:tim@menzies.us
http://dx.doi.org/10.1016/j.infsof.2017.08.007
http://dx.doi.org/10.1016/j.infsof.2017.08.007

2 J. Chen et al. / Information and Software Technology 0 0 0 (2017) 1–14

ARTICLE IN PRESS

JID: INFSOF [m5G; September 11, 2017;12:1]

Note the differences between SWAY and standard EA:

1. SWAY quits after the initial generation while EA reasons over

multiple generations;

2. SWAY makes no use of reproduction operators so there is no

way for lessons learned to accumulate as it executes;

3. Depending on the algorithm, not all members of the population

will be evaluated – e.g. active learners [34] only evaluate a few

representative individuals.

Because of the limited nature of this search, until recently, we

would have dismissed SWAY as comparatively less effective than

EA for exploring multi-goal optimization. Nevertheless, quite by

accident, we have stumbled onto evidence that has dramatically

changed our opinion about SWAY. Recently we were working with

an algorithm called GALE [34] . GALE is an evolutionary algorithm

that includes SWAY as a sub-routine:

evolution = generations ∗
{

mutation

crossover
sampling

SWAY = GALE − evolution

While porting GALE from Python to Java, we accidentally disabled

evolution. To our surprise, the “broken” version worked as well, or

better, than the original GALE. This is an interesting result since

GALE has been compared against dozens of models in a recent

TSE article [34] and dozens more in Krall’s Ph.D. thesis [30] . In

those studies, GALE was found to be competitive against widely

used evolutionary algorithms. If Krall’s work is combined with the

results from our accident, then we conjecture that the success of

GALE is due less to “evolution” than to “sampling” many options.

This, in turn, could lead to a new generation of very fast optimiz-

ers since, as we show below, sampling can be much faster than

evolving.

The rest of this paper describes SWAY and presents evidence for

its utility. While we have tested SWAY on the standard EA bench-

marks such as DTLZ, Fonseca, Golinski, Srinivas, etc. [16] , those re-

sults are not included here since, in our experience, results from

those benchmarks are less convincing to the SE community than

results from software models. Hence, here we present results from:

• POM3: a model of agile teams selecting their next task from

the scrum backlog [11,51] ;

• XOMO: a model predicting software development time, effort,

risks and defects [41,44,45] ;

• MONRP: a model of next release planning that recommends

which functionality to code next [4] .

After presenting some background motivational notes, this pa-

per offers general notes on multi-objective evolutionary algo-

rithms. This is followed by a description of SWAY and the POM3,

XOMO, MONRP models. Experimental results are then presented

showing that SWAY achieves results competitive with standard

methods (NSGA-II and SPEA2) using orders of magnitude fewer

evaluations. Working with the MONRP models, we also find that a

seemingly minor detail (the implementation of the distance func-

tion used to recognize “dissimilar” examples) is of vital importance

to the success of SWAY. Finally, this paper concludes with experi-

ments on “super-charging” that tests whether SWAY can boost the

performance of standard optimizers.

Our observations after conducting the study are:

• The mutation strategies seen in a recently published EA algo-

rithm (GALE) adds little value;

• GALE without evolution (SWAY) runs an order of magnitude

faster than EAs;

• Optimization found by SWAY are similar to those found by SBSE

algorithms;

• How we recognize “dissimilar” examples is of vital importance;

• Super-charging (combining SWAY with standard SBSE optimiz-

ers) is not useful.

More generally, our conclusion is that sampling is an interesting

research approach for multi-dimensional optimization that deserves

further attention by the SBSE community.

1.1. Connection to prior work

This paper significantly extends prior work by the authors. The

background notes in the next section are new to the paper, as

is the super-charging study. Also, this paper repairs a significant

drawback seen in initial describing of SWAY. At SSBSE’16 [48] , we

demonstrated how SWAY can be used to find near optimal solu-

tions for problems like XOMO and POM. While an interesting re-

sult, it turns out that the early definition of “dissimilar” used by

the earlier version of SWAY was only applicable to problems whose

decision space is constrained in nature. The results on other types

of problems, were less than impressive. In this paper, we expose

the weakness of the earlier variant of SWAY and show other def-

initions of “dissimilar” can make SWAY very useful for other do-

mains.

1.2. When is SWAY most useful, useless?

SWAY is designed as a fast substitution of EAs for solving SBSE

problems. It can avoid large amount of model evaluations, which

are very common in previous evolutionary algorithms. In view of

this, SWAY is particularly useful in following two scenarios.

SWAY would be most useful if it is proposed to put humans-in-

the-loop to help guide the evaluations (e.g. as done in [53]). In this

scenario, standard EAs might have to ask a human for up to O (N

2)

opinions for G generations. On the other hand, SWAY would only

trouble the user O (lg N) times

Also, SWAY was created to solve problems, where the practi-

tioner is not able to evaluate thousands of individuals for e.g. Wang

et al. [64] spent 15 years of CPU time to find software clone de-

tectors or model explored by Krall et al. [34] which take hours to

perform a single evaluation.

However, as discussed later in this paper, SWAY has two core

assumptions. Firstly, it is applicable only when there is a mapping

between “genotype” and “phenotype” space; i.e. between the set-

tings to the model inputs and outputs of the model. Even though

such mapping may not exist in every model, we find here that for

SE models (that were written with the explicit goal of effecting

outputs with input decisions), this assumption holds adequately, at

least for the purposes of improving model output.

Secondly, SWAY techniques for dividing the data makes the

spectral learning assumption ; i.e. that within the raw dimensions of

data seen in any domain, there exists a small set of spectral dimen-

sions which can usefully approximate the larger set [28] . While the

universality of the spectral assumption has not been proven, it has

seen to hold in many domains; e.g. see any data analysis method

that uses principle components analysis [2,5,38,52,57] .

1.3. Access to code

For the purposes of reproducibility, all the code and data used

in this paper are available at http://tiny.cc/Sway .

2. Frequently asked questions

Before exploring the technical details on SWAY, we digress to

answer some frequently asked questions about this research.

Please cite this article as: J. Chen et al., Beyond evolutionary algorithms for search-based software engineering, Information and Software

Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.08.007

http://tiny.cc/Sway
http://dx.doi.org/10.1016/j.infsof.2017.08.007

Download English Version:

https://daneshyari.com/en/article/6948131

Download Persian Version:

https://daneshyari.com/article/6948131

Daneshyari.com

https://daneshyari.com/en/article/6948131
https://daneshyari.com/article/6948131
https://daneshyari.com

