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a b s t r a c t 

Context: Evolutionary algorithms typically require large number of evaluations (of solutions) to converge 

– which can be very slow and expensive to evaluate. 

Objective: To solve search-based software engineering (SE) problems, using fewer evaluations than evo- 

lutionary methods. 

Method: Instead of mutating a small population, we build a very large initial population which is then 

culled using a recursive bi-clustering chop approach. We evaluate this approach on multiple SE mod- 

els, unconstrained as well as constrained, and compare its performance with standard evolutionary algo- 

rithms. 

Results: Using just a few evaluations (under 100), we can obtain comparable results to state-of-the-art 

evolutionary algorithms. 

Conclusion: Just because something works, and is widespread use, does not necessarily mean that there 

is no value in seeking methods to improve that method. Before undertaking search-based SE optimization 

tasks using traditional EAs, it is recommended to try other techniques, like those explored here, to obtain 

the same results with fewer evaluations. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

Due to the complexities of software architectures and share- 

holder requirements, it is often hard to solve complex model- 

ing problems via a standard numerical mathematical analysis or 

some deterministic algorithms [25] . There are many reasons for 

this complexity: 

• When procedural code is used within the model of a domain, 

every “if” statement can divide the internal problem space into 

different regions (once for each branch in the “if”). Such soft- 

ware models cannot be optimized via traditional numerical 

methods which assume models are a single continuous differ- 

entiable function. 

• Finding solutions to problems often means accommodating 

competing choices. When stakeholders propose multiple goals, 

search-based SE (SBSE) methods can reflect on goal interactions 

to propose novel solutions to hard optimization problems such 

as configuring products in complex product lines [55] , tuning 

parameters of a data miner [59] , or finding best configurations 

for clone detection algorithms [63] . 
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For these tasks, many SBSE researchers usually use evolutionary 

algorithms (EA) [55,59,63] . Evolutionary algorithms start by gener- 

ating a set of initial solutions and improve them through crossover 

and mutation, also known as reproduction operators. They are in- 

spired by evolution in nature and make no parametric assumptions 

about problems being generated. In our experience, this has made 

them particularly well-suited for SE problems. However, evolution- 

ary algorithms typically require large number of evaluations (of so- 

lutions) to converge. Real-world model-based applications may be 

very expensive to evaluate (with respect to computation time, re- 

sources required etc.). 

So, can we do better than EA for SBSE? Or, are there faster al- 

ternatives to EA? This paper experimentally evaluates one such al- 

ternative called SWAY (short for the S ampling WAY ): 

1. Similar to a standard EA, generate an initial population; 

2. Intelligently select a cluster within the population generated 

with best scores. 

SWAY runs so fast since it terminates after just O ( lg N) evalu- 

ations of N candidate solutions. SWAY’s intelligent selection mech- 

anism for exploring subsets of the population is a recursive binary 

chop that (i) finds and evaluates only the two most dissimilar ex- 

amples, then (ii) recurses only on half of the data containing the 

better among its similar example. As shown later in this paper, for 

this process to work, it is important to have the right definition of 

“dissimilar”. 

http://dx.doi.org/10.1016/j.infsof.2017.08.007 

0950-5849/© 2017 Published by Elsevier B.V. 

Please cite this article as: J. Chen et al., Beyond evolutionary algorithms for search-based software engineering, Information and Software 

Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.08.007 

http://dx.doi.org/10.1016/j.infsof.2017.08.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:jchen37@ncsu.edu
mailto:vivekaxl@gmail.com
mailto:vnair2@ncsu.edu
mailto:tim.menzies@gmail.com
mailto:tim@menzies.us
http://dx.doi.org/10.1016/j.infsof.2017.08.007
http://dx.doi.org/10.1016/j.infsof.2017.08.007


2 J. Chen et al. / Information and Software Technology 0 0 0 (2017) 1–14 

ARTICLE IN PRESS 

JID: INFSOF [m5G; September 11, 2017;12:1 ] 

Note the differences between SWAY and standard EA: 

1. SWAY quits after the initial generation while EA reasons over 

multiple generations; 

2. SWAY makes no use of reproduction operators so there is no 

way for lessons learned to accumulate as it executes; 

3. Depending on the algorithm, not all members of the population 

will be evaluated – e.g. active learners [34] only evaluate a few 

representative individuals. 

Because of the limited nature of this search, until recently, we 

would have dismissed SWAY as comparatively less effective than 

EA for exploring multi-goal optimization. Nevertheless, quite by 

accident, we have stumbled onto evidence that has dramatically 

changed our opinion about SWAY. Recently we were working with 

an algorithm called GALE [34] . GALE is an evolutionary algorithm 

that includes SWAY as a sub-routine: 

evolution = generations ∗
{ 

mutation 

crossover 
sampling 

SWAY = GALE − evolution 

While porting GALE from Python to Java, we accidentally disabled 

evolution. To our surprise, the “broken” version worked as well, or 

better, than the original GALE. This is an interesting result since 

GALE has been compared against dozens of models in a recent 

TSE article [34] and dozens more in Krall’s Ph.D. thesis [30] . In 

those studies, GALE was found to be competitive against widely 

used evolutionary algorithms. If Krall’s work is combined with the 

results from our accident, then we conjecture that the success of 

GALE is due less to “evolution” than to “sampling” many options. 

This, in turn, could lead to a new generation of very fast optimiz- 

ers since, as we show below, sampling can be much faster than 

evolving. 

The rest of this paper describes SWAY and presents evidence for 

its utility. While we have tested SWAY on the standard EA bench- 

marks such as DTLZ, Fonseca, Golinski, Srinivas, etc. [16] , those re- 

sults are not included here since, in our experience, results from 

those benchmarks are less convincing to the SE community than 

results from software models. Hence, here we present results from: 

• POM3: a model of agile teams selecting their next task from 

the scrum backlog [11,51] ; 

• XOMO: a model predicting software development time, effort, 

risks and defects [41,44,45] ; 

• MONRP: a model of next release planning that recommends 

which functionality to code next [4] . 

After presenting some background motivational notes, this pa- 

per offers general notes on multi-objective evolutionary algo- 

rithms. This is followed by a description of SWAY and the POM3, 

XOMO, MONRP models. Experimental results are then presented 

showing that SWAY achieves results competitive with standard 

methods (NSGA-II and SPEA2) using orders of magnitude fewer 

evaluations. Working with the MONRP models, we also find that a 

seemingly minor detail (the implementation of the distance func- 

tion used to recognize “dissimilar” examples) is of vital importance 

to the success of SWAY. Finally, this paper concludes with experi- 

ments on “super-charging” that tests whether SWAY can boost the 

performance of standard optimizers. 

Our observations after conducting the study are: 

• The mutation strategies seen in a recently published EA algo- 

rithm (GALE) adds little value; 

• GALE without evolution (SWAY) runs an order of magnitude 

faster than EAs; 

• Optimization found by SWAY are similar to those found by SBSE 

algorithms; 

• How we recognize “dissimilar” examples is of vital importance; 

• Super-charging (combining SWAY with standard SBSE optimiz- 

ers) is not useful. 

More generally, our conclusion is that sampling is an interesting 

research approach for multi-dimensional optimization that deserves 

further attention by the SBSE community. 

1.1. Connection to prior work 

This paper significantly extends prior work by the authors. The 

background notes in the next section are new to the paper, as 

is the super-charging study. Also, this paper repairs a significant 

drawback seen in initial describing of SWAY. At SSBSE’16 [48] , we 

demonstrated how SWAY can be used to find near optimal solu- 

tions for problems like XOMO and POM. While an interesting re- 

sult, it turns out that the early definition of “dissimilar” used by 

the earlier version of SWAY was only applicable to problems whose 

decision space is constrained in nature. The results on other types 

of problems, were less than impressive. In this paper, we expose 

the weakness of the earlier variant of SWAY and show other def- 

initions of “dissimilar” can make SWAY very useful for other do- 

mains. 

1.2. When is SWAY most useful, useless? 

SWAY is designed as a fast substitution of EAs for solving SBSE 

problems. It can avoid large amount of model evaluations, which 

are very common in previous evolutionary algorithms. In view of 

this, SWAY is particularly useful in following two scenarios. 

SWAY would be most useful if it is proposed to put humans-in- 

the-loop to help guide the evaluations (e.g. as done in [53] ). In this 

scenario, standard EAs might have to ask a human for up to O ( N 

2 ) 

opinions for G generations. On the other hand, SWAY would only 

trouble the user O ( lg N) times 

Also, SWAY was created to solve problems, where the practi- 

tioner is not able to evaluate thousands of individuals for e.g. Wang 

et al. [64] spent 15 years of CPU time to find software clone de- 

tectors or model explored by Krall et al. [34] which take hours to 

perform a single evaluation. 

However, as discussed later in this paper, SWAY has two core 

assumptions. Firstly, it is applicable only when there is a mapping 

between “genotype” and “phenotype” space; i.e. between the set- 

tings to the model inputs and outputs of the model. Even though 

such mapping may not exist in every model, we find here that for 

SE models (that were written with the explicit goal of effecting 

outputs with input decisions), this assumption holds adequately, at 

least for the purposes of improving model output. 

Secondly, SWAY techniques for dividing the data makes the 

spectral learning assumption ; i.e. that within the raw dimensions of 

data seen in any domain, there exists a small set of spectral dimen- 

sions which can usefully approximate the larger set [28] . While the 

universality of the spectral assumption has not been proven, it has 

seen to hold in many domains; e.g. see any data analysis method 

that uses principle components analysis [2,5,38,52,57] . 

1.3. Access to code 

For the purposes of reproducibility, all the code and data used 

in this paper are available at http://tiny.cc/Sway . 

2. Frequently asked questions 

Before exploring the technical details on SWAY, we digress to 

answer some frequently asked questions about this research. 
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