
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Empirical evaluation of software maintainability based on a manually
validated refactoring dataset

Péter Hegedűsa, István Kádárb, Rudolf Ferenc⁎,b, Tibor Gyimóthyb

aMTA-SZTE Research Group on Artificial Intelligence, Szeged, Hungary
bUniversity of Szeged, Hungary

A R T I C L E I N F O

Keywords:
Code refactoring
Manually validated empirical dataset
Source code metrics
Software maintainability
Empirical study

A B S T R A C T

Context: Refactoring is a technique for improving the internal structure of software systems. It has a solid
theoretical background while being used in development practice also. However, we lack empirical research
results on the real effect of code refactoring and its application.
Objective: This paper presents a manually validated subset of a previously published dataset containing the
refactorings extracted by the RefFinder tool, code metrics, and maintainability of 7 open-source systems. We
found that RefFinder had around 27% overall average precision on the subject systems, thus our manually
validated subset has substantial added value. Using the dataset, we studied several aspects of the refactored and
non-refactored source code elements (classes and methods), like the differences in their maintainability and
source code metrics.
Method: We divided the source code elements into a group containing the refactored elements and a group with
non-refactored elements. We analyzed the elements’ characteristics in these groups using correlation analysis,
Mann–Whitney U test and effect size measures.
Results: Source code elements subjected to refactorings had significantly lower maintainability than elements
not affected by refactorings. Moreover, refactored elements had significantly higher size related metrics, com-
plexity, and coupling. Also these metrics changed more significantly in the refactored elements. The results are
mostly in line with our previous findings on the not validated dataset, with the difference that clone metrics had
no strong connection with refactoring.
Conclusions: Compared to the preliminary analysis using a not validated dataset, the manually validated dataset
led to more significant results, which suggests that developers find targets for refactorings based on some in-
ternal quality properties of the source code, like their size, complexity or coupling, but not clone related metrics
as reported in our previous studies. They do not just use these properties for identifying targets, but also control
them with refactorings.

1. Introduction

Source code refactoring is a popular and powerful technique for
improving the internal structure of software systems. The concept of
refactoring was introduced by Fowler [1] and nowadays IT practi-
tioners think of it as an essential part of the development process. De-
spite the high acceptance of refactoring techniques by the software
industry, it has been shown that practitioners apply code refactoring
differently than Fowler originally suggested. He proposed that code
smells should be the primary technique for identifying refactoring op-
portunities in the code and a lot of research effort [2–5] has been put
into examining them. However, there are statements in the literature

[6–8] that engineers are aware of code smells, but are not really con-
cerned on their impact as refactoring activity is not focused on them. A
similar counter intuitive result by Bavota et al. [9] suggests that only
7% of the refactoring operations actually remove the code smells from
the affected class. Besides exploring how, when and why refactoring is
used in the everyday software development, their effects on short and
long-term maintainability and costs are vaguely supported by empirical
results.

To help addressing the further empirical investigations of code re-
factoring, we proposed a publicly available refactoring dataset [10] that
we assembled using the RefFinder [11,12] tool for refactoring extraction
and the SourceMeter1 static source code analyzer tool for source code

https://doi.org/10.1016/j.infsof.2017.11.012
Received 14 January 2017; Received in revised form 11 November 2017; Accepted 19 November 2017

⁎ Corresponding author.
E-mail addresses: hpeter@inf.u-szeged.hu (P. Hegedűs), ikadar@inf.u-szeged.hu (I. Kádár), ferenc@inf.u-szeged.hu (R. Ferenc), gyimothy@inf.u-szeged.hu (T. Gyimóthy).

1 http://www.sourcemeter.com/.

Information and Software Technology 95 (2018) 313–327

Available online 21 November 2017
0950-5849/ © 2017 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2017.11.012
https://doi.org/10.1016/j.infsof.2017.11.012
mailto:hpeter@inf.u-szeged.hu
mailto:ikadar@inf.u-szeged.hu
mailto:ferenc@inf.u-szeged.hu
mailto:gyimothy@inf.u-szeged.hu
http://www.sourcemeter.com/
https://doi.org/10.1016/j.infsof.2017.11.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2017.11.012&domain=pdf


metric calculation. The dataset consists of refactorings and source code
metrics for 37 releases of 7 open-source Java systems. We applied the
dataset for a preliminary analysis on the effects of code refactoring on
source code metrics and maintainability [10,13]. After the analysis,
however, it turned out that the quality of the refactoring data is quite
low due to the false positive instances extracted by RefFinder, thus in
this paper2 we propose an improved dataset that is a manually vali-
dated subset of our original dataset. It contains one manually validated
release for each of the 7 systems. Besides the list of true positive re-
factoring instances in the dataset every refactoring is also mapped to
the source code elements at the level of methods and classes on which
the refactoring was performed. We also store exact version and line
information in the dataset to supports reproducibility. Additionally to
the source code metrics, the dataset includes the relative maintain-
ability indices of source code elements, calculated by the QualityGate3

tool, an implementation of the ColumbusQM quality model [15]. Being a
direct measure of maintainability, it allows the analysis of the con-
nection between source code maintainability and code refactoring as
well.

Although the manually validated refactoring dataset is in itself a
major contribution, we also utilized it to replicate and extend our
preliminary studies [10,13] and re-examine the connection between
maintainability and code refactoring as well as the distribution of the
individual source code metrics in the refactored and non-refactored
source code elements. The previous studies used the original (i.e. not
validated) dataset, thus it is a question how the results change using the
manually validated dataset. Our empirical investigation focused on the
low-level quality attributes of refactored (and non-refactored) classes
and methods, and we tried to find patterns that may explain the mo-
tivations of the developers to perform refactoring and how the internal
structure of the source code elements change upon refactoring.

To concisely describe our research motivations, we framed the fol-
lowing research questions, which we investigated with the help of the
improved dataset:

RQ1. Are source code elements with lower maintainability subject to
more refactorings in practice?

Since refactoring is by definition a change to improve the internal
code structure by preserving its functionality, it is an intuitive as-
sumption that poor code structure is the primary driver behind code
refactoring. To verify this, we investigated the maintainability values of
the refactored and non-refactored source code elements to see whether
there are patterns that support or contradict this assumption. By ap-
plying statistical methods on the refactoring data contained in our da-
taset we found that the low maintainability values of source code en-
tities indeed triggered more code refactorings in practice.

RQ2. What are the typical values of source code metrics of the re-
factored and non-refactored elements and how do they change upon re-
factorings?

The first research question investigates the maintainability of the
refactored and non-refactored source code elements, but we were also
interested in the typical source code metric values of these elements and
the effects of refactorings on these metrics. Although the RMI itself
relies on source code metrics, it uses and combines only a small fraction
of the available metrics (i.e. those extracted by SourceMeter). We
wanted to analyze each and every metric by itself to get a deeper insight
about the effect of refactorings on them. Moreover, besides the sheer
metric values we were also interested in their changes throughout the
releases.

Therefore, in RQ2 we examined how do the well-known source code
metrics, like complexity, lines of code, coupling, etc., shape and change
for the refactored and non-refactored source code elements. In general,
we found that source code elements that were refactored had

significantly different (typically higher) size related metrics (e.g. lines
of code, number of statements), complexity (e.g. McCabe’s cyclomatic
complexity [16], nesting level) and coupling (e.g. coupling between
object classes and number of incoming invocations) on average than
source code elements not refactored at all.

Moreover, these were the metrics that changed more significantly in
the refactored elements than in the non-refactored ones. Additionally,
we found no such metric that would be consistently larger in the non-
refactored classes and/or would grow much slower in non-refactored
classes than in the refactored ones.

We also compared the findings with the previous results obtained on
the not validated refactoring dataset and found that most of the metric
groups found to be relevant in connection with refactoring was the
same for both datasets. However, while previous results displayed 2–4
significant cases out of 7, we obtained 3–6 significant cases with much
stronger p-values using the manually validated dataset. We also iden-
tified that clone related metrics had no strong connection with re-
factoring, even though previous results on the not validated dataset
suggested so due to the false positive refactoring instances.

The main contributions of the paper can be summarized as follows.
In the conference version [14] we already presented:

• A manually validated dataset containing true positive refactoring
instances attached to source code elements at method and class level
and their source code metrics and maintainability scores.

• An extension of the RefFinder tool that allows batch-style analysis
and result reporting attached to the source code elements.

• An empirical investigation of the maintainability scores of the
source code classes and methods affected by at least one refactoring
and those of not.

On the basis of the achieved positive results so far, in this paper we
extend our previous analysis with:

• An empirical evaluation of the main quality properties (i.e. source
code metrics) and their changes due to refactoring (an entirely new
research question).

• A comparison of the findings with the previous results obtained on
the not validated refactoring dataset.

• Detailed information of the existing and new statistical test results
and an extended discussion of them.

• We made our data analysis results available online just like the
dataset itself.

The rest of the paper is organized as follows. First, we start with a
related literature overview in Section 2. Next, Section 3 outlines the
data collection and validation process of creating the dataset. We de-
scribe the data analysis methodology applied for answering the re-
search questions in Section 4. In Section 5, we display the results of our
empirical investigation on the maintainability and source code metrics
of refactored and non-refactored source code entities. The threats to the
validity of our results are listed in Section 7. Finally, we conclude the
paper in Section 8.

2. Related work

There are several studies that have investigated the relationship
between practical refactoring activities and the software quality
through different quality attributes. Many of them used the RefFinder
tool [11] to extract refactorings from real-life open-source systems, si-
milarly as we did.

Bavota et al. [9] made observations on the relations between me-
trics/code smells and refactoring activities. They mined the evolution
history of 2 open-source Java projects and revealed that refactoring
operations are generally focused on code components for which quality
metrics do not suggest there might be a need for refactoring operations.

2 This journal paper is an extended version of our conference paper [14].
3 http://www.quality-gate.com/.

P. Hegedűs et al. Information and Software Technology 95 (2018) 313–327

314

http://www.quality-gate.com/


Download English Version:

https://daneshyari.com/en/article/6948135

Download Persian Version:

https://daneshyari.com/article/6948135

Daneshyari.com

https://daneshyari.com/en/article/6948135
https://daneshyari.com/article/6948135
https://daneshyari.com

