
ARTICLE IN PRESS 

JID: INFSOF [m5G; September 14, 2017;1:41 ] 

Information and Software Technology 0 0 0 (2017) 1–17 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Are you smelling it? Investigating how similar developers detect code 

smells 

Mário Hozano 

a , b , ∗, Alessandro Garcia 

c , Baldoino Fonseca 

d , Evandro Costa 

d 

a Department of Computing Systems, UFCG, Campina Grande-PB, Brazil 
b Núcleo de Ciências Exatas, UFAL, Arapiraca-AL, Brazil 
c Opus Research Group – LES, Informatics Department, PUC-Rio, Rio de Janeiro-RJ, Brazil 
d Computing Institute, UFAL, Maceió-AL, Brazil 

a r t i c l e i n f o 

Article history: 

Received 8 December 2016 

Revised 29 August 2017 

Accepted 5 September 2017 

Available online xxx 

Keywords: 

Code smell 

Detection 

Software maintenance 

Empirical study 

a b s t r a c t 

Context: A code smell indicates a poor implementation choice that often worsens software quality. Thus, 

code smell detection is an elementary technique to identify refactoring opportunities in software systems. 

Unfortunately, there is limited knowledge on how similar two or more developers detect smells in code. 

In particular, few studies have investigated if developers agree or disagree when recognizing a smell and 

which factors can influence on such (dis)agreement. 

Objective: We perform a broader study to investigate how similar the developers detect code smells. We 

also analyze whether certain factors related to the developers’ profiles concerning background and expe- 

rience may influence such (dis)agreement. Moreover, we analyze if the heuristics adopted by developers 

on detecting code smells may influence on their (dis)agreement. 

Method: We conducted an empirical study with 75 developers who evaluated instances of 15 different 

code smell types. For each smell type, we analyzed the agreement among the developers and we assessed 

the influence of 6 different factors on the developers’ evaluations. Altogether more than 2700 evaluations 

were collected, resulting in substantial quantitative and qualitative analyses. 

Results: The results indicate that the developers presented a low agreement on detecting all 15 smell 

types analyzed in our study. The results also suggest that factors related to background and experience 

did not have a consistent influence on the agreement among the developers. On the other hand, the re- 

sults show that the agreement was consistently influenced by specific heuristics employed by developers. 

Conclusions: Our findings reveal that the developers detect code smells in significantly different ways. 

As a consequence, these findings introduce some questions concerning the results of previous studies 

that did not consider the different perceptions of developers on detecting code smells. Moreover, our 

findings shed light towards improving state-of-the-art techniques for accurate, customized detection of 

code smells. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

A code smell indicates a poor implementation choice that often 

worsens software quality [1] . Therefore, code smell detection is an 

elementary technique for supporting a wide range of quality im- 

provement tasks, such as enhancing program comprehension [2] , 

reducing program error proneness [3] , and combating software 

design degradation [4] . However, detecting code smells in practice 

is much harder than it is usually assumed or advertised [5–8] . A 

key, prevalent challenge for developers is to perform this task on 

source code produced by others. 

∗ Corresponding author at: Department of Computing Systems, UFCG, Brazil. 

E-mail address: hozano@gmail.com (M. Hozano). 

Recent estimates confirm at least 180 billion lines of legacy, 

smelly code are target of software refactoring [9] . In such sys- 

tems, either experienced or inexperienced developers have to rea- 

son about the smelliness of the legacy code. In the context of 

open-source projects, the presence of code smells is a frequent rea- 

son on why pull requests are rejected by core developers [10] . Dif- 

ferent core developers have to judge the “smelliness” of the source 

code produced by potential contributors in a single project [10] . As 

core and peripheral developers have varying experience and back- 

grounds, their views about each code smell may conflict with each 

other. Moreover, it is a commonplace for developers to be shuffled 

between projects, thereby requiring them to detect smells in unfa- 

miliar code. 

http://dx.doi.org/10.1016/j.infsof.2017.09.002 

0950-5849/© 2017 Elsevier B.V. All rights reserved. 

Please cite this article as: M. Hozano et al., Are you smelling it? Investigating how similar developers detect code smells, Information 

and Software Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.09.002 

http://dx.doi.org/10.1016/j.infsof.2017.09.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:hozano@gmail.com
http://dx.doi.org/10.1016/j.infsof.2017.09.002
http://dx.doi.org/10.1016/j.infsof.2017.09.002


2 M. Hozano et al. / Information and Software Technology 0 0 0 (2017) 1–17 

ARTICLE IN PRESS 

JID: INFSOF [m5G; September 14, 2017;1:41 ] 

All these scenarios expose developers to formulate their (pos- 

sibly diverging) views about code smells in a single project. In 

particular, the informal and subjective definition of certain smell 

types [1] may lead two or more developers to reason about each 

smell occurrence differently [11] . In spite of the extensive tool sup- 

port for smell detection available nowadays (e.g. [12–18] ), devel- 

opers still need to analyze each smell individually and confirm its 

occurrence on the system. While a developer may confirm a code 

snippet as the host of a particular smell, other developers may not 

necessarily agree. For instance, consider the Long Method smell de- 

fined as a method that is too long and tries to do too much [1] . When 

a developer is focused on detecting Long Methods , he may face sub- 

jective questions, such as: 

• How to judge whether a method is long? 

• How to judge whether a method is doing too much? 

• Is it possible to detect a Long Method solely based on the lines 

of code of a method? 

• How many lines of code are required to characterize a method 

as Long Method ? 

Given the subjective nature of such questions, different devel- 

opers working on the same code base may have different answers 

to them. As a consequence, they may or may not agree on the 

occurrence of a Long Method . Similar reasoning applies to the de- 

tection of other smell types. Many would claim high agreement is 

beneficial for various reasons. First, it would be easier to promote 

consistency across code reviews. Second, it would be more feasible 

to rely on existing tooling support for smell detection (e.g. [12–

18] ). On the other hand, these benefits become harder to achieve 

if high disagreement across developers is the norm, rather than the 

exception. 

In either case, little is known about how similar developers de- 

tect smells in code. In particular, there is no understanding if cer- 

tain factors influence or not (dis)similar opinions of developers on 

smell occurrences. Various factors underpinning developers’ char- 

acteristics may play a role on the code smell detection process. 

Such factors may include basic characteristics of software develop- 

ers, such as similar (or diverse) background and experience. Inde- 

pendently from a developer’s profile, a more personal factor may 

also influence how developers detect code smells. For instance, 

each developer can rather follow their own very specific way (from 

herein called “heuristic”) to detect a code smell. 

However, the factors influencing such (dis)agreement of devel- 

opers have been rarely studied. Only few studies [19–22] have 

only investigated the level of (dis)agreement among developers on 

smell occurrences. The studies described in [19,21,22] have ana- 

lyzed the agreement among developers, but their findings were 

limited to only three types of smells. One might expect develop- 

ers detect more similarly certain types of code smells than others. 

For instance, there are several types of code smells affecting dif- 

ferent structures of a program, ranging from a simple statement 

within a method to a group of classes [1] . Developers might tend 

to have a more uniform view on smells confined to simpler pro- 

gram structures. The study presented in Mäntylä et al. [20] inves- 

tigated the developers’ agreement over a greater variety of code 

smells. The authors performed a preliminary analysis if developers’ 

background and experience could influence their agreement. How- 

ever, the small data set used in this study did not allow the au- 

thors to obtain conclusive results. More importantly, none of these 

studies have investigated how similar are the heuristics formulated 

by different developers to detect smells. 

In this context, this paper reports a broader study aiming at 

investigating the (dis)agreement among developers on detecting 

occurrences of 15 different smell types. The study also analyzes 

whether certain factors may influence such (dis)agreement. We 

count with 75 developers who evaluated the presence of code 

smells into a huge set of code snippets from real projects. Alto- 

gether, more than 2700 evaluations were collected and analyzed. 

We assessed the agreement among developers by considering its 

statistical significance. We analyzed the influence of six factors on 

the developers’ agreement. Such factors are mainly related to de- 

velopers’ background and experience. In addition, we investigated 

how similar are the heuristics formulated by different developers 

to detect smells. 

Our study led to three main findings: (i) developers presented 

statistically significant low agreement levels on evaluating all 15 

smell types, contradicting key results from previous studies; (ii) 

the developers’ background and experience did not present a con- 

sistent influence on the agreement; and (iii) the heuristic factor 

played the most important role on developers’ agreement. These 

findings suggest the increasing need for improving customizable 

techniques for smell detection by taking into account the percep- 

tion of each developer. Thus, we discuss the potential and possible 

limitations of state-of-the-art techniques for smell detection. 

The remaining of this document is structured as follows. 

Section 2 describes the design of our empirical study and the re- 

search questions. In Section 3 we present the results of the study 

and, in Section 4 , we answer the research questions. Section 5 de- 

tails the threats of the study. Next, Section 6 presents the related 

work. Finally, Section 7 presents the conclusions observed in our 

study. 

2. Study design 

This study aims at investigating how similar the developers de- 

tect code smells in unfamiliar source code. We analyze if devel- 

opers tend to agree or disagree on the occurrences of smells per- 

taining to a wide range of types. In particular, we study to what 

extent certain factors may or may not influence common percep- 

tions shared by different developers. Developers detected several 

instances of 15 different types of code smells found into real sys- 

tems. As a result, we analyzed the agreement among developers 

according to their evaluations. Moreover, we investigated if partic- 

ipants with common characteristics detected code smells similarly. 

In this way, two main research questions guided our study: 

• RQ1 : Do developers agree on the “smelliness” of the source code? 

The motivation for this question is to investigate if, in general, 

developers agree about detecting code smells into real projects. 

In addition, we analyze the degree of such agreement in or- 

der to verify how differently the developers detect smells in 

the same programs. Particularly, such analysis becomes diffi- 

cult because it requires the participation of several developers 

with different characteristics (Section 1) in order to create a rel- 

evant sample. Such requirements may have reduced the con- 

clusions of previous studies that performed investigations con- 

cerning similar questions [19,20] . Thus, we aimed at performing 

a deeper investigation in order to increase the knowledge about 

how similar the developers detect smells in unfamiliar source 

code. Our results may shed light on the construction of more 

efficient detection techniques. 

• RQ2 : What makes developers agree on the “smelliness” of the 

source code? 

The motivation of this question aims at analyzing if certain 

factors may influence (dis)agreement of developers on smell 

detection. In particular, we analyze whether developers de- 

tect code smells similarly, when grouped according to com- 

mon characteristics that they share. Previous studies have per- 

formed similar investigations grouping developers according to 

their experience and background [19–22] . In addition to these 

aspects, we also investigate how the (dis)similar judgment of 

developers is influenced by heuristics they formulate for smell 

Please cite this article as: M. Hozano et al., Are you smelling it? Investigating how similar developers detect code smells, Information 

and Software Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.09.002 

http://dx.doi.org/10.1016/j.infsof.2017.09.002


Download English Version:

https://daneshyari.com/en/article/6948175

Download Persian Version:

https://daneshyari.com/article/6948175

Daneshyari.com

https://daneshyari.com/en/article/6948175
https://daneshyari.com/article/6948175
https://daneshyari.com

