
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

RINGA: Design and verification of finite state machine for self-adaptive
software at runtime

Euijong Leea,*, Young-Gab Kimb,**, Young-Duk Seoa,*, Kwangsoo Seola,*, Doo-Kwon Baika,*
a Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
b Department of Computer and Information Security, Sejong University, Seoul, Republic of Korea

A R T I C L E I N F O

Keywords:
Self-adaptive software
Model checking
Finite state machine
Runtime

A B S T R A C T

Context: In recent years, software environments such as the cloud and Internet of Things (IoT) have become
increasingly sophisticated, and as a result, development of adaptable software has become very important. Self-
adaptive software is appropriate for today's needs because it changes its behavior or structure in response to a
changing environment at runtime. To adapt to changing environments, runtime verification is an important
requirement, and research that integrates traditional verification with self-adaptive software is in high demand.
Objective: Model checking is an effective static verification method for software, but existing problems at run-
time remain unresolved. In this paper, we propose a self-adaptive software framework that applies model
checking to software to enable verification at runtime.
Method: The proposed framework consists of two parts: the design of self-adaptive software using a finite state
machine and the adaptation of the software during runtime. For the first part, we propose two finite state
machines for self-adaptive software called the self-adaptive finite state machine (SA-FSM) and abstracted finite
state machine (A-FSM). For the runtime verification part, a self-adaptation process based on a MAPE (mon-
itoring, analyzing, planning, and executing) loop is implemented.
Results: We performed an empirical evaluation with several model-checking tools (i.e., NuSMV and
CadenceSMV), and the results show that the proposed method is more efficient at runtime. We also investigated
a simple example application in six scenarios related to the IoT environment. We implemented Android and
Arduino applications, and the results show the practical usability of the proposed self-adaptive framework at
runtime.
Conclusions: We proposed a framework for integrating model checking with a self-adaptive software lifecycle.
The results of our experiments showed that the proposed framework can achieve verify self-adaptation software
at runtime.

1. Introduction

Nowadays, various software platforms (e.g., smartphone operating
systems, cloud environments, Arduino, Raspberry Pi, and web-based
applications) are available. As a result, various software applications
depending on platforms such as the cloud and Internet of Things (IoT)1

have become widespread. Furthermore, rapid advancements in mobile
and IoT devices have led to a demand in software systems that can
operate in various environments. Hence, self-adaptive software is soft-
ware that changes its behavior or structure in a changing environment
at runtime [1]. Self-adaptive software satisfies the current need for
software that can operate in various environments. Verification is one

of the most important tasks for self-adaptive software, and it needs to be
performed at runtime [1]. To viably support runtime verification, the
integration of traditional verification with self-adaptive software is
preferable [2,3]. Model checking is an effective static verification
method for software and is governed by the state-based model [4].
Despite excellent verification performance, model checking incurs a
problem at runtime: state explosion [5]. Therefore, model checking
needs to be integrated in the self-adaptation lifecycle during runtime
verification.

There are several studies [6–13] on state machines and model
checking in self-adaptive software. On one hand, some studies [6–8]
apply state machines and model checking to self-adaptive software

http://dx.doi.org/10.1016/j.infsof.2017.09.008
Received 13 September 2016; Received in revised form 8 September 2017; Accepted 16 September 2017

* Corresponding author at: Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea.
** Corresponding author at: Department of Computer and Information Security, Sejong University, Seoul, Republic of Korea.
E-mail addresses: kongjjagae@korea.ac.kr (E. Lee), alwaysgabi@sejong.ac.kr (Y.-G. Kim), seoyoungd@korea.ac.kr (Y.-D. Seo), seolks@korea.ac.kr (K. Seol),

baikdk@korea.ac.kr (D.-K. Baik).
1 Full definition of acronyms is described in Annex.

Information and Software Technology xxx (xxxx) xxx–xxx

0950-5849/ © 2017 Elsevier B.V. All rights reserved.

Please cite this article as: Lee, E., Information and Software Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.09.008

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
http://dx.doi.org/10.1016/j.infsof.2017.09.008
http://dx.doi.org/10.1016/j.infsof.2017.09.008
mailto:kongjjagae@korea.ac.kr
mailto:alwaysgabi@sejong.ac.kr
mailto:seoyoungd@korea.ac.kr
mailto:seolks@korea.ac.kr
mailto:baikdk@korea.ac.kr
http://dx.doi.org/10.1016/j.infsof.2017.09.008

design and evaluation. Such methods are useful during design-time
verification and post-processing for evaluating self-adaptive software,
but they have limitations when applied at runtime for verification. On
the other hand, some studies [10–12] apply probabilistic model
checking to verify self-adaptive software at runtime and use an inter-
active state machine (ISM) to verify self-adaptive software that suffers
from uncertainty. An ISM is a state machine that can interactively up-
date its model and requirements in response to environment changes.
We assume that the runtime environment of self-adaptive software is
not predictable, and therefore, an ISM is more suitable for verifying
self-adaptive software at runtime. However, previous studies on ISMs
have only been optimized to solve uncertainty problems. Therefore, in
this study, we propose a finite state model to design and verify self-
adaptive software.

In this paper, to resolve the above design and verification issues, we
propose two types of finite state machines for the design and verification
of self-adaptive software. Furthermore, we propose a self-adaptive fra-
mework called RINGA (Runtime verIfication with fiNite state machine
desiGn for self-Adaptation software) using the two types of finite state
machines. RINGA consists of two parts: the design-time part is re-
sponsible for the design of finite and abstract-state machines for perfor-
mance at runtime, and the runtime part consists of a MAPE (Monitoring-
Analyzing-Planning-Executing) loop that analyzes the environment with
the abstract state machine extracted from the design-time part. We per-
formed an empirical evaluation using symbolic model checking tools,
and our results show that the proposed method can be used to perform
verification at runtime. Furthermore, we implemented an Android and
Arduino application with an IoT-based example application in six sce-
narios to measure the adaptability of the proposed framework.

The remainder of the paper is organized as follows. Section 2 pro-
vides background on self-adaptive software and work related to run-
time model checking for self-adaptive software. Section 3 introduces
the proposed framework. Section 4 presents the empirical evaluation.
Section 5 presents the results of experiments with a simple IoT-based
example application. Section 6 discusses the limitations of the proposed
approach and extensions that could overcome these limitations.
Section 7 provides the concluding remarks and discusses future work.

2. Related work

In this section, we introduce various self-adaptive frameworks and
platforms, as well as previous studies on the verification requirements
in self-adaptive software research. We summarize previous research
and compare it with RINGA in Table 1. Details regarding the various
studies are described in subsections on the frameworks, platforms, and
verification of self-adaptive software.

2.1. Self-adaptive software frameworks

As mentioned earlier, to adapt to changing environments at run-
time, self-adaptive software dynamically changes its behavior or
structure [1]. Therefore, self-adaptive software detects the state of an
environment and changes its behavior or structure if possible when its
aim has been violated [1]. That is, self-adaptive software monitors its
environment and analyzes the situation and environment to adapt to
any changes. To accomplish this, the MAPE loop mechanism was pro-
posed [1,14–16] and implemented in several self-adaptive software and
autonomic computers. A MAPE loop consists of four parts:

• Monitoring: responsible for collecting and correlating data from the
environment and internal software changes.

• Analyzing: responsible for analyzing the symptoms related to si-
tuation changes using the monitored data.

• Planning: determines the adaptive strategies, i.e., is responsible for
determining what is to be changed and how.

• Executing: responsible for activating the adaptive strategies. Ta
bl
e
1

C
om

pa
ri
so
n
of

pr
ev

io
us

re
se
ar
ch

an
d
R
IN

G
A
.

W
or
k
by

G
oa

l
Li
fe
cy
cl
e

M
od

el
fo
r
sy
st
em

Te
ch

ni
qu

e
fo
r

Ex
pe

ri
m
en

ta
l

de
si
gn

ve
ri
fi
ca
ti
on

do
m
ai
n

Te
se
i
et

al
.[

6]
Se

lf
-a
da

pt
iv
e
sy
st
em

de
si
gn

an
d
ve

ri
fi
ca
ti
on

of
co

ns
tr
ai
nt

vi
ol
at
io
ns

N
/A

St
at
e
m
ac
hi
ne

M
od

el
ch

ec
ki
ng

Ec
ol
og

y
A
be

yw
ic
kr
am

a
an

d
Za

m
bo

ne
lli

[7
]

Se
lf
-a
da

pt
iv
e
so
ft
w
ar
e
de

si
gn

us
in
g
a
go

al
-b
as
ed

m
od

el
N
/A

SO
TA

(a
go

al
-b
as
ed

m
od

el
)

M
od

el
ch

ec
ki
ng

e-
m
ob

ili
ty

Jo
hn

so
n
et

al
.[

9]
R
ev

er
ifi
ca
ti
on

of
co

m
po

ne
nt
-b
as
ed

so
ft
w
ar
e
sy
st
em

N
/A

Pr
ob

ab
ili
st
ic

m
od

el
M
od

el
ch

ec
ki
ng

C
lo
ud

se
rv
ic
es

Fi
lie

ri
et

al
.[

10
–1

2]
St
at
ic
al
ly

ge
ne

ra
te
d
ve

ri
fi
ca
ti
on

co
nd

it
io
ns

at
ru
nt
im

e
C
on

tr
ol

lo
op

D
is
cr
et
e-
ti
m
e
M
ar
ko

v
ch

ai
n

M
od

el
ch

ec
ki
ng

Se
rv
er
–c
lie

nt
w
eb

an
d
lo
w
er

w
ir
el
es
s

bu
se
s

Y
an

g
et

al
.[

13
]

V
er
ifi
ca
ti
on

of
se
lf
-a
da

pt
iv
e
so
ft
w
ar
e
in
vo

lv
in
g
un

ce
rt
ai
nt
y
in

en
vi
ro
nm

en
ta
l
in
te
ra
ct
io
ns

R
ea
ct
io
n
lo
op

IS
M

M
od

el
ch

ec
ki
ng

R
ob

ot
ca
rs

Ta
lla

ba
ci

an
d
So

uz
a
[1
7]

A
da

pt
iv
e
sy
st
em

de
si
gn

us
in
g
a
go

al
-b
as
ed

m
od

el
M
A
PE

lo
op

G
oa

l-b
as
ed

m
od

el
C
he

ck
in
g
fu
lfi
llm

en
t
of

go
al
-b
as
ed

m
od

el
A
ut
om

at
ed

te
lle

r
m
ac
hi
ne

s
Ba

rn
a
et

al
.[

18
]

Se
lf
-a
da

pt
iv
e
cl
ou

d
ba

se
d
ex
em

pl
ar

M
A
PE

lo
op

N
/A

N
/A

C
lo
ud

en
vi
ro
nm

en
ts

G
ar
la
n
et

al
.[

19
]

Su
pp

or
t
re
us
ab

le
in
fr
as
tr
uc

tu
re

C
on

tr
ol

lo
op

A
rc
hi
te
ct
ur
e

So
ft
w
ar
e
ar
ch

it
ec
tu
re

an
d
re
us
ab

le
in
fr
as
tr
uc

tu
re

W
eb

-b
as
ed

cl
ie
nt
–s
er
ve

r
sy
st
em

s

K
na

us
s
et

al
.[

21
]

A
da

pt
at
io
n
of

co
nt
ex
tu
al

re
qu

ir
em

en
ts

M
A
PE

lo
op

C
on

te
xt
ua

l
re
qu

ir
em

en
t

M
ac
hi
ne

le
ar
ni
ng

,d
at
a
m
in
in
g

A
ct
iv
it
y-
sc
he

du
lin

g
sy
st
em

s
W
ut
tk
e
et

al
.[

23
]

Se
lf
-a
da

pt
iv
e
tr
affi

c
ro
ut
in
g
ba

se
d
ex
em

pl
ar

N
/A

N
/A

N
/A

Tr
affi

c
ro
ut
in
g

W
ey

ns
an

d
C
al
in
es
cu

[2
4]

Se
lf
-a
da

pt
iv
e
se
rv
ic
e-
ba

se
d
sy
st
em

ex
em

pl
ar

M
A
PE

lo
op

N
/A

N
/A

Te
le
-a
ss
is
ta
nc

e
sy
st
em

s
R
IN

G
A

Se
lf
-a
da

pt
iv
e
so

ft
w
ar
e
de

si
gn

an
d
ve

ri
fi
ca

ti
on

at
ru

nt
im

e
M
A
PE

lo
op

SA
-F
SM

,
A
-F
SM

M
od

el
ch

ec
ki
ng

Li
gh

t
co

nt
ro

l
ap

pl
ic
at
io
ns

E. Lee et al. Information and Software Technology xxx (xxxx) xxx–xxx

2

Download English Version:

https://daneshyari.com/en/article/6948181

Download Persian Version:

https://daneshyari.com/article/6948181

Daneshyari.com

https://daneshyari.com/en/article/6948181
https://daneshyari.com/article/6948181
https://daneshyari.com

