Information and Software Technology Xxx (XXXX) XXX—XXX

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

RINGA: Design and verification of finite state machine for self-adaptive
software at runtime

a, a, a, a,

Euijong Lee™*, Young-Gab Kim"™ *, Young-Duk Seo™*, Kwangsoo Seol™*, Doo-Kwon Baik™*

@ Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
® Department of Computer and Information Security, Sejong University, Seoul, Republic of Korea

ARTICLE INFO ABSTRACT

Keywords:
Self-adaptive software
Model checking
Finite state machine
Runtime

Context: In recent years, software environments such as the cloud and Internet of Things (IoT) have become
increasingly sophisticated, and as a result, development of adaptable software has become very important. Self-
adaptive software is appropriate for today's needs because it changes its behavior or structure in response to a
changing environment at runtime. To adapt to changing environments, runtime verification is an important
requirement, and research that integrates traditional verification with self-adaptive software is in high demand.
Objective: Model checking is an effective static verification method for software, but existing problems at run-
time remain unresolved. In this paper, we propose a self-adaptive software framework that applies model
checking to software to enable verification at runtime.

Method: The proposed framework consists of two parts: the design of self-adaptive software using a finite state
machine and the adaptation of the software during runtime. For the first part, we propose two finite state
machines for self-adaptive software called the self-adaptive finite state machine (SA-FSM) and abstracted finite
state machine (A-FSM). For the runtime verification part, a self-adaptation process based on a MAPE (mon-
itoring, analyzing, planning, and executing) loop is implemented.

Results: We performed an empirical evaluation with several model-checking tools (i.e., NuSMV and
CadenceSMV), and the results show that the proposed method is more efficient at runtime. We also investigated
a simple example application in six scenarios related to the IoT environment. We implemented Android and
Arduino applications, and the results show the practical usability of the proposed self-adaptive framework at
runtime.

Conclusions: We proposed a framework for integrating model checking with a self-adaptive software lifecycle.
The results of our experiments showed that the proposed framework can achieve verify self-adaptation software
at runtime.

1. Introduction

Nowadays, various software platforms (e.g., smartphone operating
systems, cloud environments, Arduino, Raspberry Pi, and web-based
applications) are available. As a result, various software applications
depending on platforms such as the cloud and Internet of Things (IoT)"
have become widespread. Furthermore, rapid advancements in mobile
and IoT devices have led to a demand in software systems that can
operate in various environments. Hence, self-adaptive software is soft-
ware that changes its behavior or structure in a changing environment
at runtime [1]. Self-adaptive software satisfies the current need for
software that can operate in various environments. Verification is one

of the most important tasks for self-adaptive software, and it needs to be
performed at runtime [1]. To viably support runtime verification, the
integration of traditional verification with self-adaptive software is
preferable [2,3]. Model checking is an effective static verification
method for software and is governed by the state-based model [4].
Despite excellent verification performance, model checking incurs a
problem at runtime: state explosion [5]. Therefore, model checking
needs to be integrated in the self-adaptation lifecycle during runtime
verification.

There are several studies [6-13] on state machines and model
checking in self-adaptive software. On one hand, some studies [6-8]
apply state machines and model checking to self-adaptive software

" Corresponding author at: Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea.
* Corresponding author at: Department of Computer and Information Security, Sejong University, Seoul, Republic of Korea.
E-mail addresses: kongjjagae@korea.ac.kr (E. Lee), alwaysgabi@sejong.ac.kr (Y.-G. Kim), seoyoungd@korea.ac.kr (Y.-D. Seo), seolks@korea.ac.kr (K. Seol),

baikdk@korea.ac.kr (D.-K. Baik).
1 Full definition of acronyms is described in Annex.

http://dx.doi.org/10.1016/j.infsof.2017.09.008

Received 13 September 2016; Received in revised form 8 September 2017; Accepted 16 September 2017

0950-5849/ © 2017 Elsevier B.V. All rights reserved.

Please cite this article as: Lee, E., Information and Software Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.09.008

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
http://dx.doi.org/10.1016/j.infsof.2017.09.008
http://dx.doi.org/10.1016/j.infsof.2017.09.008
mailto:kongjjagae@korea.ac.kr
mailto:alwaysgabi@sejong.ac.kr
mailto:seoyoungd@korea.ac.kr
mailto:seolks@korea.ac.kr
mailto:baikdk@korea.ac.kr
http://dx.doi.org/10.1016/j.infsof.2017.09.008

E. Lee et al. Information and Software Technology xxx (xxxX) XXX—-XXX

design and evaluation. Such methods are useful during design-time "
. F4]
verification and post-processing for evaluating self-adaptive software, 2
but they have limitations when applied at runtime for verification. On g £
the other hand, some studies [10-12] apply probabilistic model § 2 ;i) g a
. =]
checking to verify self-adaptive software at runtime and use an inter- i £ B i 2 g
. . . . =
active state machine (ISM) to verify self-adaptive software that suffers g g 2 g 2 g -'_‘-';
s o [=]
from uncertainty. An ISM is a state machine that can interactively up- g Egg = f &
. . . . —] T E = 5 o0 —_
date its model and requirements in response to environment changes. £ 8= 985 <SEETE
. . . . =1 L 1<} ol S -1 SRR
We assume that the runtime environment of self-adaptive software is e | & 5 5§ 2838 ez g
. . . ap s = a = 4]
not predictable, and therefore, an ISM is more suitable for verifying g g & ’é 283 g EZ: E&€ ¢z
s . . s S S & 3 5200 T S5 5
self-adaptive software at runtime. However, previous studies on ISMs 5SS | Sco82E8 o=z £&£~283
have only been optimized to solve uncertainty problems. Therefore, in =
this study, we propose a finite state model to design and verify self- "é
adaptive software. - 9
. . e g =
In this paper, to resolve the above design and verification issues, we g 3 e
propose two types of finite state machines for the design and verification Tg £E
o . <
of self-adaptive software. Furthermore, we propose a self-adaptive fra- J’a" g E
g
mework called RINGA (Runtime verlfication with fiNite state machine 2 5 3
. § £ "
desiGn for self-Adaptation software) using the two types of finite state 0w w E g %O 2
machines. RINGA consists of two parts: the design-time part is re- 8 2228 2 L B¢gE 3
. . .) s5|8888 8 & 588 §:
sponsible for the design of finite and abstract-state machines for perfor- 2E|€558 § ¥ g8 v 5
= — _— vl B —
mance at runtime, and the runtime part consists of a MAPE (Monitoring- E2| 8833 3 3 < £ = 3
. 95 33808 S 2%g&s3<<e
Analyzing-Planning-Executing) loop that analyzes the environment with gelssss 5 6z8EsSz28
the abstract state machine extracted from the design-time part. We per- =
formed an empirical evaluation using symbolic model checking tools, 3 g B
© =]
and our results show that the proposed method can be used to perform E oz g
e e . . . T O =
verification at runtime. Furthermore, we implemented an Android and E 2 § E 3 g =
Arduino application with an IoT-based example application in six sce- 2 v EEZ g g 7]
. s > E£E8 e E =] © & =
narios to measure the adaptability of the proposed framework. 5 g ®F < T 2 T <
. . . . © = g 171 131 'Y
The remainder of the paper is organized as follows. Section 2 pro- ; g E s % 2 £ =
. : g o} 2 = = -1 B
vides background on self-adaptive software and work related to run- N §E5¢ .g = § S E é ‘2‘: § -
. . . R . < n A A £} %]
time model checking for self-adaptive software. Section 3 introduces
the proposed framework. Section 4 presents the empirical evaluation. & 8§ Aaf A oo
. . . . =} — (=] =]
Section 5 presents the results of experiments with a simple IoT-based g = g 832 & 3¢
. I o - o
example application. Section 6 discusses the limitations of the proposed g <<<f B % E = E < E E
. o e = ANIANEN N
approach and extensions that could overcome these limitations. e 2228 & =25 =z=3
Section 7 provides the concluding remarks and discusses future work. 2
(=]
= = o
2. Related work e ' g
Z £ E
. €9 , § g
In this section, we introduce various self-adaptive frameworks and £ c £ & hot
. . e . . a =} < ©
platforms, as well as previous studies on the verification requirements § _E 8 ‘g E| 3 g
. . . . o 2 =1
in self-adaptive software research. We summarize previous research s¢vs & 8 . &
. oL @ = 5 < .9
and compare it with RINGA in Table 1. Details regarding the various 3 g g ¢ 3 == |
. . . . = o S @
studies are described in subsections on the frameworks, platforms, and g D5 E - g § g £
e R F= N1 L = . 553w
verification of self-adaptive software. 8 ¥ g E § = Ew g g
‘B [=9 U L O
9 43 g «© 22 8o
i Ecic 8 »5E 22:8
2.1. Self-adaptive software frameworks g% G g 2 §885 E»g 3
=0 B =2 8 °FE —_ g 8
§S8E 2288 SZEe
: ; : . T e Sy Sowmsgg 229 &
As mentioned earlier, to adapt to changing environments at run- g ; S v £ £ 8 € 3 é gz
. LS =E S E TS
time, self-adaptive software dynamically changes its behavior or eEs s 3$Eg g2 SEga
. w a Q Y o= O F=
structure [1]. Therefore, self-adaptive software detects the state of an 985 SE%98 Beoel
. . . . - - EER P SsgwEs 0 §EEER
environment and changes its behavior or structure if possible when its 288> S Evel £8%8
. SS9 ETF SE&T 5 Sggg
aim has been violated [1]. That is, self-adaptive software monitors its < | = FF8g £2:832 88 3
. . . .) o] = 5 o R
environment and analyzes the situation and environment to adapt to zZ|S 382Z 252233 2838
any changes. To accomplish this, the MAPE loop mechanism was pro- = _
. . . =1 N
posed [1,14-16] and implemented in several self-adaptive software and s =
autonomic computers. A MAPE loop consists of four parts: = g
5 2 K X
T . . . -] = -
e Monitoring: responsible for collecting and correlating data from the e N - z
. . 3 g
environment and internal software changes. 5 8§31 8 = = @ g
. . . . = —_ = ™ KA © (A=
e Analyzing: responsible for analyzing the symptoms related to si- & SEs o = = =2E
. . . S R R A -3 ®<
tuation changes using the monitored data. g | . FEBTE 3 LG ; 28
. e -] ISR <
e Planning: determines the adaptive strategies, i.e., is responsible for -2 | 2 k2 g2 £ 8 205 gfsg 3
determining what is to be changed and how. v 2| % BEE %0 = £ E Egz
. — b=} —
. . Lo .) TE|= E<8E & £88 £=z:=+4
e Executing: responsible for activating the adaptive strategies. = O

Download English Version:

https://daneshyari.com/en/article/6948181

Download Persian Version:

https://daneshyari.com/article/6948181

Daneshyari.com

https://daneshyari.com/en/article/6948181
https://daneshyari.com/article/6948181
https://daneshyari.com

