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Context: In recent years, software environments such as the cloud and Internet of Things (IoT) have become
increasingly sophisticated, and as a result, development of adaptable software has become very important. Self-
adaptive software is appropriate for today's needs because it changes its behavior or structure in response to a
changing environment at runtime. To adapt to changing environments, runtime verification is an important
requirement, and research that integrates traditional verification with self-adaptive software is in high demand.
Objective: Model checking is an effective static verification method for software, but existing problems at run-
time remain unresolved. In this paper, we propose a self-adaptive software framework that applies model
checking to software to enable verification at runtime.

Method: The proposed framework consists of two parts: the design of self-adaptive software using a finite state
machine and the adaptation of the software during runtime. For the first part, we propose two finite state
machines for self-adaptive software called the self-adaptive finite state machine (SA-FSM) and abstracted finite
state machine (A-FSM). For the runtime verification part, a self-adaptation process based on a MAPE (mon-
itoring, analyzing, planning, and executing) loop is implemented.

Results: We performed an empirical evaluation with several model-checking tools (i.e., NuSMV and
CadenceSMV), and the results show that the proposed method is more efficient at runtime. We also investigated
a simple example application in six scenarios related to the IoT environment. We implemented Android and
Arduino applications, and the results show the practical usability of the proposed self-adaptive framework at
runtime.

Conclusions: We proposed a framework for integrating model checking with a self-adaptive software lifecycle.
The results of our experiments showed that the proposed framework can achieve verify self-adaptation software
at runtime.

1. Introduction

Nowadays, various software platforms (e.g., smartphone operating
systems, cloud environments, Arduino, Raspberry Pi, and web-based
applications) are available. As a result, various software applications
depending on platforms such as the cloud and Internet of Things (IoT)"
have become widespread. Furthermore, rapid advancements in mobile
and IoT devices have led to a demand in software systems that can
operate in various environments. Hence, self-adaptive software is soft-
ware that changes its behavior or structure in a changing environment
at runtime [1]. Self-adaptive software satisfies the current need for
software that can operate in various environments. Verification is one

of the most important tasks for self-adaptive software, and it needs to be
performed at runtime [1]. To viably support runtime verification, the
integration of traditional verification with self-adaptive software is
preferable [2,3]. Model checking is an effective static verification
method for software and is governed by the state-based model [4].
Despite excellent verification performance, model checking incurs a
problem at runtime: state explosion [5]. Therefore, model checking
needs to be integrated in the self-adaptation lifecycle during runtime
verification.

There are several studies [6-13] on state machines and model
checking in self-adaptive software. On one hand, some studies [6-8]
apply state machines and model checking to self-adaptive software
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