
ARTICLE IN PRESS 

JID: INFSOF [m5G; September 21, 2017;21:22 ] 

Information and Software Technology 0 0 0 (2017) 1–16 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

A semi-automated framework for the identification and estimation of 

Architectural Technical Debt: A comparative case-study on the 

modularization of a software component 

Antonio Martini a , ∗, Erik Sikander b , Niel Madlani b 

a University of Oslo, Department of Informatics Programming and Software Engineering Group, Oslo, Norway 
b Chalmers University of Technology, Software Engineering Division Gothenburg, Sweden 

a r t i c l e i n f o 

Article history: 

Received 14 December 2016 

Revised 30 July 2017 

Accepted 11 August 2017 

Available online xxx 

Keywords: 

Measurement System 

Software management 

Refactoring 

Estimation 

Technical Debt 

Modularization 

Software Architecture 

a b s t r a c t 

Context: Research and industry’s attention has been focusing on developing systems that enable fast time 

to market in the short term, but would assure a sustainable delivery of business value and maintenance 

operations in the long run. A related phenomenon has been identified in Architectural Technical Debt: if 

the system architecture is sub-optimal for long-term business goals, it might need to be refactored. A key 

property of the system assuring long-term goals is its modularity, or else the degree to which components 

are decoupled: such property allows the product to be evolved without costly changes pervading the 

whole system. However, understanding the business benefits of refactoring to achieve modularity is not 

trivial, especially for large refactorings involving substantial architectural changes. 

Objective: The aim of this study was to develop a technique to identify Architectural Technical Debt in 

the form of a non-modularized component and to quantify the convenience of its repayment. 

Method: We have conducted a single, embedded case study in a large company, comparing a compo- 

nent before and after it was refactored to achieve modularity. We have developed a holistic framework 

for the semi-automated identification and estimation of Architectural Technical Debt in the form of non- 

modularized components. We then evaluate the technique reporting a comparative study of the difference 

in maintenance and development costs in two coexisting systems, one including the refactored compo- 

nent and one including the non-refactored one. 

Results: The main contributions are a measurement system for the identification of the Architectural 

Technical Debt according to the stakeholders’ goals, a mathematical relationship for calculating and quan- 

tifying its interest in terms of extra-effort spent in additional development and maintenance, and an 

overall decision framework to assess the benefit of refactoring. We also report context-specific results 

that show the estimated benefits of refactoring the specific case of Architectural Technical Debt. 

Conclusion: We found that it is possible to identify this kind of Architectural Technical Debt and to 

quantify its repayment convenience. Thanks to the developed framework, it was possible to estimate that 

the Architectural Technical Debt present in the component was causing substantial continuous extra- 

effort, and that the modularization would be repaid in several months of development and maintenance. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

Large software organizations need to achieve a sustainable 

strategy to balance short-term implementations, to quickly deliver 

value to customers, with solutions that would sustain their busi- 

ness in the long term. To illustrate such a phenomenon, a finan- 

cial metaphor has been coined, which compares the act of imple- 

menting sub-optimal solutions, in order to meet short-term goals, 

to taking debt, which has to be repaid with interests in the long 

∗ Corresponding author. 

E-mail address: antonio.martini@ifi.uio.no (A. Martini). 

term. The term Technical Debt (TD) has been first coined at OOP- 

SLA by Cunningham [1] to describe a situation in which developers 

take decisions that bring short-term benefits but cause long-term 

detriment of the software. 

The up-to-date definition, developed by the Technical Debt 

community, is available in the Dagstuhl seminar report 16162 [2] : 

“In software-intensive systems, technical debt is a design or im- 

plementation construct that is expedient in the short term, but sets 

up a technical context that can make a future change more costly 

or impossible. Technical debt is a contingent liability whose im- 

pact is limited to internal system qualities, primarily maintainabil- 

ity and evolvability ”

http://dx.doi.org/10.1016/j.infsof.2017.08.005 

0950-5849/© 2017 Published by Elsevier B.V. 

Please cite this article as: A. Martini et al., A semi-automated framework for the identification and estimation of Architectural Tech- 

nical Debt: A comparative case-study on the modularization of a software component, Information and Software Technology (2017), 

http://dx.doi.org/10.1016/j.infsof.2017.08.005 

http://dx.doi.org/10.1016/j.infsof.2017.08.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:antonio.martini@ifi.uio.no
http://dx.doi.org/10.1016/j.infsof.2017.08.005
http://dx.doi.org/10.1016/j.infsof.2017.08.005


2 A. Martini et al. / Information and Software Technology 0 0 0 (2017) 1–16 

ARTICLE IN PRESS 

JID: INFSOF [m5G; September 21, 2017;21:22 ] 

Kruchten et al. [3] define several kinds of Technical Debt. In this 

paper, we focus on the Architectural Technical Debt (ATD) kind, 

which is Technical Debt that concerns the way in which the sys- 

tem has been architected. Architectural Technical Debt has been, 

in recent years, elaborated and refined in Software Engineering lit- 

erature: Tom et al. [4] first mentioned Architectural Technical Debt 

(ATD, categorized together with Design Debt). A further classifica- 

tion can be found in [3] , where ATD is regarded as the most chal- 

lenging TD to be uncovered by Kruchten et al. In particular, such 

study highlights that there is a lack of research and tool support to 

manage ATD in practice. ATD has been further recognized in a re- 

cent systematic mapping [5] on TD. Finally, a systematic literature 

review on ATD has been published recently [6] . Such recent body 

of knowledge highlights the lack of empirical research and the crit- 

ical need of management tools to identify and estimate Architec- 

tural Technical Debt. The main goal of this paper is to develop a 

viable technique to support such need. 

According to the glossary proposed in [7] , we recall here that 

the ATD present in a system is a set of “sub-optimal architec- 

tural solutions”. An optimal architecture refers to the architecture 

identified by the software and system architects as the optimal 

trade-off when considering the concerns collected from the dif- 

ferent stakeholders (which is the “desired” architecture). Such ar- 

chitecture needs to support the business goals of the organization. 

An example of ATD might be the presence of structural violations 

[8] : a component might not be well modularized, which causes ex- 

tra costs when the business requirements change. However, it is 

important to notice that an optimal architectural trade-off might 

change over time, due to business evolution and to new informa- 

tion collected during implementation [9] . It is important to notice 

that it might be difficult to anticipate an optimal solution that re- 

mains sustainable for several years. For this reason, it becomes im- 

portant to continuously monitor the architecture and to identify a 

costly emerging sub-optimality (ATD). The identification [5] of ATD 

is therefore one of the main activities of software architects. In this 

paper, we seek to develop an automated solution that would sup- 

port the identification of a specific ATD kind. 

ATD needs to be identified; however, it is at least as impor- 

tant to estimate the convenience of refactor it. The costs related to 

ATD are based on two main components, reported in TD literature: 

principal and interest. The principal is the cost of refactoring, nec- 

essary to remove the debt. In a concrete example, if a system con- 

tains ATD in the form of a non-modularized component, the prin- 

cipal is the cost of reworking the component and split it into mul- 

tiple, loosely-coupled components. The interest is considered the 

extra-cost that is associated with the ATD, or else the extra-cost 

that would not be paid by the organization if the ATD would not 

be present in the system. For example, if the system is not well 

modularized, each change (for example a bug fix) might require 

the developers to change several parts of the system, which would 

require more time and resources from the developers [10] . An ATD 

item is usually refactored if the principal is considered less than 

the interest left to be paid [11,12] . Estimating principal and interest, 

to understand the convenience of refactoring ATD, is therefore one 

of the main goals of current research and one of the main need 

of software organizations. However, such task has proven to be ex- 

tremely difficult. The goal of this paper is therefore to develop a 

technique to estimate the convenience of refactoring the ATD. 

In summary, for software organizations, it is important to iden- 

tify ATD and to understand if repaying it would be convenient with 

respect to the cost of not repaying the debt (calculated as inter- 

est). Architects and software managers need methods and tools to 

systematically analyze and estimate the impact of ATD, in order 

to clearly show the urgency of the refactoring [13] . There are only 

few quantitative approaches revealing the business value of repay- 

ing the Technical Debt [10] . Such approaches are not related to 

quantify the benefits of modularity. Although there exists several 

studies on identifying the lack of modular components [10] , such 

studies do not connect the identification of such ATD with a sys- 

tematic estimation of its principal and interest. Technical and non- 

technical experts need a holistic framework to identify ATD, in the 

form of lack of modularization, and to quantitatively estimate the 

benefits of removing it. This problem leads to our overall research 

question: 

RQ – How can we identify and estimate, in a quantitative way, if 

a non-modularized component is worth refactoring? 

This is the overall goal of the study, i.e. understanding if the 

component contains ATD in the form of lack of modularization and 

how convenient it would be to repay the debt. Hence, we need 

to know how much is the principal and the interest of such ATD. 

Using the ratio between principal and interest, we can calculate 

the cost/benefit of repaying the debt. In order to understand if the 

ATD needs refactoring, we have to first identify the ATD and then 

estimate the costs, which leads to the following RQs. 

RQ1 – How can we identify if a component contains ATD in the 

form of lack of modularization? 

RQ2 – How can we estimate the current extra-cost paid as inter- 

est of the ATD? 

RQ3 – How can we estimate the long-term cost saved by modu- 

larizing the component? 

We have conducted a case study in a large software company: 

we have studied a case in which the functionality of a compo- 

nent was modularized and used by new applications. We created 

a measurement system that identified the need of refactoring ac- 

cording to the stakeholders’ goals. Then, by comparing the devel- 

opment and maintenance effort between the two solutions, we as- 

sessed the goals met by the stakeholders and we developed a for- 

mula quantifying the benefits of refactoring in terms of develop- 

ment months. 

In Section 2 we explain our research methodology together 

with the relevant work used to define the measurement sys- 

tem to identify ATD and calculate the benefits of refactoring, 

in Section 3 we report the results, which are discussed in 

Sections 4 and 5 we draw our conclusions. 

2. Research design 

2.1. Case-study design 

We conducted a single, embedded case-study, following the 

guidelines in [14] . The main case was a large company develop- 

ing software. We can consider the case as embedded as we stud- 

ied two instances of the component, refactored and non-refactored 

(the unit of analysis). The two units of analysis were studied in 

parallel. 

The execution of the study followed three steps: 

1. Elicitation of the goals related to the refactoring of ATD 

2. Development of the framework for identification and estima- 

tion of ATD 

a. Development of the Measurement System according to the 

goals in point 1 

b. Development of the estimation 

3. Evaluation of the framework, based on a comparative case- 

study of pre- and post- refactoring 

a. Quantitatively analyzing the source code and the versioning 

system 

b. Quantitatively and qualitatively inquiring the developers and 

architects on the results of the refactoring 

Please cite this article as: A. Martini et al., A semi-automated framework for the identification and estimation of Architectural Tech- 

nical Debt: A comparative case-study on the modularization of a software component, Information and Software Technology (2017), 

http://dx.doi.org/10.1016/j.infsof.2017.08.005 

http://dx.doi.org/10.1016/j.infsof.2017.08.005


Download English Version:

https://daneshyari.com/en/article/6948187

Download Persian Version:

https://daneshyari.com/article/6948187

Daneshyari.com

https://daneshyari.com/en/article/6948187
https://daneshyari.com/article/6948187
https://daneshyari.com

