
Information and Software Technology 76 (2016) 135–146 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Tuning for software analytics: Is it really necessary? 

Wei Fu 

∗, Tim Menzies , Xipeng Shen 

Department of Computer Science, North Carolina State University, Raleigh, NC, USA 

a r t i c l e i n f o 

Article history: 

Received 25 January 2016 

Revised 26 April 2016 

Accepted 29 April 2016 

Available online 30 April 2016 

Keywords: 

Defect prediction 

CART 

Random forest 

Differential evolution 

Search-based software engineering 

a b s t r a c t 

Context: Data miners have been widely used in software engineering to, say, generate defect predictors 

from static code measures. Such static code defect predictors perform well compared to manual methods, 

and they are easy to use and useful to use. But one of the “black arts” of data mining is setting the 

tunings that control the miner. 

Objective: We seek simple, automatic, and very effective method for finding those tunings. 

Method: For each experiment with different data sets (from open source JAVA systems), we ran differen- 

tial evolution as an optimizer to explore the tuning space (as a first step) then tested the tunings using 

hold-out data. 

Results: Contrary to our prior expectations, we found these tunings were remarkably simple: it only re- 

quired tens, not thousands, of attempts to obtain very good results. For example, when learning software 

defect predictors, this method can quickly find tunings that alter detection precision from 0% to 60%. 

Conclusion: Since (1) the improvements are so large, and (2) the tuning is so simple, we need to change 

standard methods in software analytics. At least for defect prediction, it is no longer enough to just run 

a data miner and present the result without conducting a tuning optimization study. The implication for 

other kinds of analytics is now an open and pressing issue. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

In the 21 st century, it is impossible to manually browse all 

available software project data. The PROMISE repository of SE data 

has grown to 200+ projects [1] and this is just one of over a 

dozen open-source repositories that are readily available to re- 

searchers [2] . For example, at the time of this writing (Jan 2016), 

our web searches show that Mozilla Firefox has over 1.1 million 

bug reports, and platforms such as GitHub host over 14 million 

projects. 

Faced with this data overload, researchers in empirical SE use 

data miners to generate defect predictors from static code measures . 

Such measures can be automatically extracted from the code base, 

with very little effort even for very large software systems [3] . 

One of the “black arts” of data mining is setting the tuning 

parameters that control the choices within a data miner. Prior to 

this work, our intuition was that tuning would change the behav- 

ior or a data miner, to some degree. Nevertheless, we rarely tuned 

our defect predictors since we reasoned that a data miner’s default 

∗ Corresponding author. 

E-mail addresses: wfu@ncsu.edu (W. Fu), tim.menzies@gmail.com (T. Menzies), 

xshen5@ncsu.edu (X. Shen). 

tunings have been well-explored by the developers of those algo- 

rithms (in which case tuning would not lead to large performance 

improvements). Also, we suspected that tuning would take so long 

time and be so CPU intensive that the benefits gained would not 

be worth effort. 

The results of this paper show that the above points are false 

since, at least for defect prediction from code attributes: 

1. Tuning defect predictors is remarkably simple ; 

2. And can dramatically improve the performance . 

Those results were found by exploring six research questions: 

• RQ1: Does tuning improve the performance scores of a predictor? 

We will show below examples of truly dramatic improvement: 

usually by 5–20% and often by much more (in one extreme 

case, precision improved from 0% to 60%). 

• RQ2: Does tuning change conclusions on what learners are better 

than others? Recent SE papers [4,5] claim that some learners are 

better than others. Some of those conclusions are completely 

changed by tuning. 

• RQ3: Does tuning change conclusions about what factors are most 

important in software engineering? Numerous recent SE papers 

(e.g. [6–11] ) use data miners to conclude that this is more im- 

portant than that for reducing software project defects. Given 

http://dx.doi.org/10.1016/j.infsof.2016.04.017 

0950-5849/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.infsof.2016.04.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.04.017&domain=pdf
mailto:wfu@ncsu.edu
mailto:tim.menzies@gmail.com
mailto:xshen5@ncsu.edu
http://dx.doi.org/10.1016/j.infsof.2016.04.017


136 W. Fu et al. / Information and Software Technology 76 (2016) 135–146 

the tuning results of this paper, we show that such conclusions 

need to be revisited. 

• RQ4: Is tuning easy? We show that one of the simpler multi- 

objective optimizers (differential evolution [12] ) works very 

well for tuning defect predictors. 

• RQ5: Is tuning impractically slow? We achieved dramatic im- 

provements in the performance scores of our data miners in 

less than 100 evaluations (!); i.e., very quickly. 

• RQ6: Should data miners be used “off-the-shelf” with their default 

tunings? For defect prediction from static code measures, our 

answer is an emphatic “no” (and the implication for other kinds 

of analytics is now an open and urgent question). 

Based on our answers to these questions, we strongly advise 

that: 

• Data miners should not be used “off-the-shelf” with default 

tunings. 

• Any future paper on defect prediction should include a tuning 

study. Here, we have found an algorithm called differential evo- 

lution to be a useful method for conducting such tunings. 

• Tuning needs to be repeated whenever data or goals are 

changed. Fortunately, the cost of finding good tunings is not ex- 

cessive since, at least for static code defect predictors, tuning is 

easy and fast. 

2. Preliminaries 

2.1. Tuning: important and ignored 

This section argues that tuning is an under-explored software 

analytics– particularly in the apparently well-explored field of de- 

fect prediction. 

In other fields, the impact of tuning is well understood [13] . Yet 

issues of tuning are rarely or poorly addressed in the defect pre- 

diction literature. When we tune a data miner, what we are really 

doing is changing how a learner applies its heuristics. This means 

tuned data miners use different heuristics, which means they ig- 

nore different possible models, which means they return different 

models; i.e. how we learn changes what we learn. 

Are the impacts of tuning addressed in the defect prediction lit- 

erature? To answer that question, in Jan 2016 we searched scholar. 

google.com for the conjunction of “data mining” and “software en- 

gineering” and “defect prediction” (more details can be found at 

https://goo.gl/Inl9nF ). After sorting by the citation count and dis- 

carding the non-SE papers (and those without a pdf link), we read 

over this sample of 50 highly-cited SE defect prediction papers. 

What we found in that sample was that few authors acknowledged 

the impact of tunings (exceptions: [4,14] ). Overall, 80% of papers in 

our sample did not adjust the “off-the-shelf” configuration of the 

data miner (e.g. [9,15,16] ). Of the remaining papers: 

• Some papers in our sample explored data super- 

sampling [17] or data sub-sampling techniques via automatic 

methods (e.g. [14,15,17,18] ) or via some domain princi- 

ples (e.g. [9,19,20] ). As an example of the latter, Nagappan 

et al. [19] checked if metrics related to organizational structure 

were relatively more powerful for predicting software defects. 

However, it should be noted that these studies varied the input 

data but not the “off-the-shelf” settings of the data miner. 

• A few other papers did acknowledge that one data miner may 

not be appropriate for all data sets. Those papers tested differ- 

ent “off-the-shelf” data miners on the same data set. For ex- 

ample, Elish et al. [16] compared support vector machines to 

other data miners for the purposes of defect prediction. SVM’s 

execute via a “kernel function” which should be specially se- 

lected for different data sets and the Elish et al. paper makes 

no mention of any SVM tuning study. To be fair to Elish et al., 

we hasten to add that we ourselves have published papers us- 

ing “off-the-shelf” tunings [15] since, prior to this paper it was 

unclear to us how to effectively navigate the large space of pos- 

sible tunings. 

Over our entire sample, there was only one paper that con- 

ducted a somewhat extensive tuning study. Lessmann et al. [4] 

tuned parameters for some of their algorithms using a grid search ; 

i.e. divide all C configuration options into N values, then try all 

N 

C combinations. This is a slow approach– we have explored grid 

search for defect prediction and found it takes days to termi- 

nate [15] . Not only that, we found that grid search can miss im- 

portant optimizations [21] . Every grid has “gaps” between each 

grid division which means that a supposedly rigorous grid search 

can still miss important configurations [13] . Bergstra and Ben- 

gio [13] comment that for most data sets only a few of the tuning 

parameters really matter– which means that much of the runtime 

associated with grid search is actually wasted. Worse still, Bergstra 

and Bengio comment that the important tunings are different for 

different data sets– a phenomenon that makes grid search a poor 

choice for configuring data mining algorithms for new data sets. 

Since the Lessmann et al. paper, much progress has been made 

in configuration algorithms and we can now report that finding 

useful tunings is very easy . This result is both novel and unexpected. 

A standard run of grid search (and other evolutionary algorithms) 

is that optimization requires thousands, if not millions, of evalu- 

ations. However, in a result that we found startling, that differen- 

tial evolution (described below) can find useful settings for learn- 

ers generating defect predictors in less than 100 evaluations (i.e. 

very quickly). Hence, the “problem” (that tuning changes the con- 

clusions) is really an exciting opportunity. At least for defect pre- 

diction, learners are very amenable to tuning. Hence, they are also 

very amenable to significant performance improvements. Given the 

low number of evaluations required, then we assert that tuning 

should be standard practice for anyone building defect predictors. 

2.2. You can’t always get what you want 

Having made the case that tuning needs to be explored more, 

but before we get into the technical details of this paper, this 

section discusses some general matters about setting goals during 

tuning experiments. 

This paper characterizes tuning as an optimization problem 

(how to change the settings on the learner in order to best improve 

the output). With such optimizations, it is not always possible to 

optimize for all goals at the same time. For example, the follow- 

ing text does not show results for tuning on recall or false alarms 

since optimizing only for those goals can lead to some undesirable 

side effects: 

• Recall reports the percentage of predictions that are actual ex- 

amples of what we are looking for. When we tune for recall , we 

can achieve near 100% recall– but at the cost of a near 100% 

false alarms. 

• False alarms is the percentage of other examples that are re- 

ported (by the learner) to be part of the targeted examples. 

When we tune for false alarms , we can achieve near zero per- 

cent false alarm rates by effectively turning off the detector (so 

the recall falls to nearly zero). 

Accordingly, this paper explores performance measures that 

comment on all target classes: see the precision and “F” measures 

discussed below: see Optimization Goals . That said, we are some- 

times asked what good is a learner if it optimizes for (say) preci- 

sion at the expense of (say) recall. 

Our reply is that software engineering is a very diverse enter- 

prise and that different kinds of development need to optimize 

http://scholar.google.com
https://goo.gl/Inl9nF


Download English Version:

https://daneshyari.com/en/article/6948211

Download Persian Version:

https://daneshyari.com/article/6948211

Daneshyari.com

https://daneshyari.com/en/article/6948211
https://daneshyari.com/article/6948211
https://daneshyari.com

