
Comparative case studies of open source software peer review
practices

Jing Wang a,⇑, Patrick C. Shih b, Yu Wu a, John M. Carroll a

a College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA 16802, USA
b Department of Information and Library Science, Indiana University, Bloomington, IN, USA

a r t i c l e i n f o

Article history:
Received 24 November 2014
Received in revised form 5 May 2015
Accepted 10 June 2015
Available online 17 June 2015

Keywords:
Open source software
Virtual community
Software peer review
Design

a b s t r a c t

Context: The power of open source software peer review lies in the involvement of virtual communities,
especially users who typically do not have a formal role in the development process. As communities
grow to a certain extent, how to organize and support the peer review process becomes increasingly chal-
lenging. A universal solution is likely to fail for communities with varying characteristics.
Objective: This paper investigates differences of peer review practices across different open source soft-
ware communities, especially the ones engage distinct types of users, in order to offer contextualized
guidance for developing open source software projects.
Method: Comparative case studies were conducted in two well-established large open source communi-
ties, Mozilla and Python, which engage extremely different types of users. Bug reports from their bug
tracking systems were examined primarily, complemented by secondary sources such as meeting notes,
blog posts, messages from mailing lists, and online documentations.
Results: The two communities differ in the key activities of peer review processes, including different
characteristics with respect to bug reporting, design decision making, to patch development and review.
Their variances also involve the designs of supporting technology. The results highlight the emerging role
of triagers, who bridge the core and peripheral contributors and facilitate the peer review process. The
two communities demonstrate alternative designs of open source software peer review and their trade-
offs were discussed.
Conclusion: It is concluded that contextualized designs of social and technological solutions to open
source software peer review practices are important. The two cases can serve as learning resources for
open source software projects, or other types of large software projects in general, to cope with chal-
lenges of leveraging enormous contributions and coordinating core developers. It is also important to
improve support for triagers, who have not received much research effort yet.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

A distinct and powerful characteristic of open source software
(OSS) development is the involvement of communities that engage
general users who do not belong to typical software development
roles. This has made OSS development an appealing research area
[2,24,42,43]. Recent advances of social computing infrastructure
create opportunities for OSS projects to leverage an even larger
crowd [12], as is demonstrated by GitHub’s surpassing other open
source forges in total number of commits in 2011 [15].

Among various forms of participation in a community, peer
review is widely regarded as the one that significantly benefits
from the community involvement. Raymond coined ‘‘Linus’s law’’
(‘‘given enough eyeballs, all bugs are shallow’’) to emphasize the
advantage of extensive peer review in OSS development [31]. It
is the practice in which community members evaluate and test
software products, identify and analyze defects or deficiencies,
and contribute and verify solutions (e.g., patches) that repair or
improve them.

This community-based practice raises the question of how com-
munities organize their peer review process, especially when they
have reached a large scale. As OSS communities grow and mature,
they encounter new challenges of engaging contributions, coordi-
nating work, and ensuring software quality [27,38]. Without expli-
cit coordination mechanisms and governance, their sustainability

http://dx.doi.org/10.1016/j.infsof.2015.06.002
0950-5849/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: 316C IST Building, University Park, PA 16802 USA.
Tel.: +1 814 863 8856.

E-mail addresses: jzw143@ist.psu.edu (J. Wang), patshih@indiana.edu
(P.C. Shih), yuw132@ist.psu.edu (Y. Wu), jcarroll@ist.psu.edu (J.M. Carroll).

Information and Software Technology 67 (2015) 1–12

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.06.002&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.06.002
mailto:jzw143@ist.psu.edu
mailto:patshih@indiana.edu
mailto:yuw132@ist.psu.edu
mailto:jcarroll@ist.psu.edu
http://dx.doi.org/10.1016/j.infsof.2015.06.002
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


and evolution will be challenged [17,26]. Therefore, reflecting on
the practices of well-established large OSS communities could pre-
pare other growing OSS projects of how to overcome such
challenges.

Each project has its own uniqueness and no one-size-fits-all
model can ensure success [4]. Studies on activities related to OSS
peer review (e.g., [21,28,34]) have already showed initial evidence
that the peer review practice is likely to vary across different OSS
communities. However, those analyses did not spend much effort
articulating the variances. They were largely focused on extracting
commonalities among OSS projects or characterizing a single pro-
ject, reporting the common constituting activities of OSS peer
review including submission/bug reporting, analysis/design dis-
cussion, fix/patch development, test/patch review [10,45].

Our investigation is aimed at extending prior research with a
dedicated codification of different OSS peer review practices,
which can provide contextualized implications for other develop-
ing OSS projects. We use the term ‘‘peer review’’ in a broad sense
to include all types of efforts in detecting software defects or defi-
ciencies rather than confine it to code reading. As a distinctive and
pivotal characteristic of OSS peer review, user involvement
undoubtedly contributes to the differences among the practices.
Users are also a substantial participating group of OSS communi-
ties, from which peer review practices cannot be detached.
Considering the unique quality and the context complexity, we
contrast OSS peer review practices through case studies on two
well-established large communities that produce software target-
ing remarkably different types of users—software developers and
end-users. Two communities can by no means cover all the varia-
tions of OSS peer review practices, but can still provide important
insights [4]. Moreover, comparing the two ends of a spectrum of
user technical expertise highlights the differences of significance
as well as enables an appropriate and flexible combination
in-between.

Our study contributes to alternative designs of social mecha-
nism and technology for OSS peer review. We identify differences
in bug reporting, design decision, and patch development and review,
the key activities constituting peer review practices, as well as in
the tool affordance and use between two well-established large
OSS communities. Our findings highlight the importance of tria-
gers, an emerging group of contributors who mediate between
the core and periphery and facilitate the peer review process. We
also characterize how core developers collaborate differently in
response to the different types and sizes of peripheral participants.
This extends prior research that primarily focused on comparing
between core and periphery.

2. Related work

2.1. Community-based open source software development

The openness of OSS to users and the engagement of virtual
communities have been attracting considerable research efforts.
Findings and discussions have centered on the different contribu-
tions from core and peripheral members. Quantitative examina-
tions repeatedly detected skewed contribution distribution: a
small group of developers in the core contributed majority of the
code, while the rest in the community mainly made occasional
contributions by reporting bugs [18,25,28]. Subsequent work elab-
orated the roles of core and peripheral members in OSS develop-
ment. Dahlander and Frederiksen [13] studied how peripheral
participants affect OSS innovation. They found that one’s position
in the core/periphery structure is more consequential for innovat-
ing than his/her expertise. Rulliani and Haefliger [36] described the
role of core developers and those in the peripheries, and how the

propagation of such standards is communicated through
non-material artifacts such as code and virtual discussions as a
social practice. Another related theme focused on how peripheral
participants advanced to core developers through either legitimate
peripheral participation [29] or socialization [14,44].

Some OSS studies described the roles in OSS development at a
finer level than the dichotomy, but most of them still classified
through the lens of users versus developers. The best-known
examples from this group of work probably include the ‘‘onion
model’’ [8] and the layered community structure [52]. They share
similar ideas: developers other than the core contribute their
patches or review or revise others’ code, either regularly (i.e., active
developer/co-developer) or sporadically (i.e., peripheral devel-
oper); users consist of active ones who report bugs and passive
ones who only use the software. Ko and Chilana [24] also identified
a group of users, power users, who submit quality bug reports. A
very small portion of research discussed the roles between users
and developers. Barcellini et al. [3] characterized the emerging
roles in the Python community. They studied 2 mailing lists (i.e.,
one user-oriented and one developer-oriented) and found that sev-
eral key participants act as boundary spanners across the commu-
nities for driving feature sets. They proposed a ‘‘role emerging
design’’ to support the coordination process in OSS.

Our study extends the understanding of roles in OSS communi-
ties through identifying and elaborating the emerging role of bug
triagers. While the OSS peer review process is not the same as fea-
ture discussions reported in the aforementioned OSS literature, we
found that bug triagers serve a similar boundary-spanning role for
resolving issues surrounding bugs. This role entails different types
of tasks depending on the characteristics of users and developers in
the community.

2.2. Software peer review in open source

Peer review is the evaluation of the quality of one’s work prod-
ucts by others. In software development, the primary objective of
peer review is to discover defects (or bugs) as early as possible dur-
ing development processes, suggest improvements and even help
developers create better products [48]. Code is not the only object
that peer review assesses but any artifacts created during the soft-
ware development process, such as requirements specifications,
use cases, project plans, user interface design and prototypes,
and documentation [22].

To this end, we use the term OSS peer review inclusively to refer
to the evaluation of the entire software application instead of con-
fining it to reading code or reviewing patches (i.e., change sets to
software products). We consider that such inclusiveness best suits
the original description of ‘‘extensive peer review’’ in OSS literature
[31]. Previous studies have identified common activities in the peer
review process [10,45]. It often begins with one submitting a bug
report (i.e., submission/bug reporting). Others diagnose the defect
causes and request additional information to determine whether
the bug should be fixed (i.e., analysis/problem identification/design
decision). Once a solution is generated (i.e., fix/solution genera-
tion/patch development), they evaluate then commit the solution
to the current software product (i.e., test/patch review and
commit).

Previous OSS studies have touched upon each individual activ-
ity involved in the OSS peer review process, but were largely
focused on the common characteristics across projects. With
respect to bug reporting, researchers found a mismatch between
the information users reported and the information developers
needed [6,45]. Ko and Chilana [24] examined the massive bug
reports in Mozilla, suggesting that reports that led to changes were
reported by a comparably small group of experienced frequent
reporters, who were the only valuable users to recruit in open

2 J. Wang et al. / Information and Software Technology 67 (2015) 1–12



Download English Version:

https://daneshyari.com/en/article/6948213

Download Persian Version:

https://daneshyari.com/article/6948213

Daneshyari.com

https://daneshyari.com/en/article/6948213
https://daneshyari.com/article/6948213
https://daneshyari.com

