
An empirical analysis of data preprocessing for machine learning-based
software cost estimation

Jianglin Huang a,⇑, Yan-Fu Li b, Min Xie a

a Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong
b Department of Industrial Engineering, CentraleSupelec, Paris, France

a r t i c l e i n f o

Article history:
Received 28 August 2014
Received in revised form 30 June 2015
Accepted 6 July 2015
Available online 13 July 2015

Keywords:
Software cost estimation
Data preprocessing
Missing-data treatments
Scaling
Feature selection
Case selection

a b s t r a c t

Context: Due to the complex nature of software development process, traditional parametric models and
statistical methods often appear to be inadequate to model the increasingly complicated relationship
between project development cost and the project features (or cost drivers). Machine learning (ML)
methods, with several reported successful applications, have gained popularity for software cost
estimation in recent years. Data preprocessing has been claimed by many researchers as a fundamental
stage of ML methods; however, very few works have been focused on the effects of data preprocessing
techniques.
Objective: This study aims for an empirical assessment of the effectiveness of data preprocessing
techniques on ML methods in the context of software cost estimation.
Method: In this work, we first conduct a literature survey of the recent publications using data prepro-
cessing techniques, followed by a systematic empirical study to analyze the strengths and weaknesses
of individual data preprocessing techniques as well as their combinations.
Results: Our results indicate that data preprocessing techniques may significantly influence the final
prediction. They sometimes might have negative impacts on prediction performance of ML methods.
Conclusion: In order to reduce prediction errors and improve efficiency, a careful selection is necessary
according to the characteristics of machine learning methods, as well as the datasets used for software
cost estimation.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Software project managers often need to estimate the cost/effort
of developing a software system at the early stage of its life-cycle
[1] in order to plan the project management activities. The ability
to accurately estimate the development cost plays an important
role in the success of software project management. In the past
decades, numerous studies have been published on software cost
estimation (SCE) methods, which can be classified into the
following three main categories.

1. Expert judgment: It requires the consultation of one or more
experts to derive the cost estimate. With the experience and
available information of past projects and the understanding
of a new project, the experts could obtain the estimation by a
non-explicit and subjective reasoning process.

2. Parametric models: They often involve the utilization of analyt-
ical or statistical equations relating software project cost to a
number of project features. The well-known ones include
COCOMO [2] and SLIM Model [3].

3. Machine learning (ML) methods: They involve at least one mod-
eling method, taking a number of project features and produc-
ing a cost prediction, making no or minimal assumptions about
the form of the relation under study. Thus they can provide
higher approximation capabilities to solve complex problems.
Recently, they have been adopted as an alternative or together
with the first two methods [4–7]. Representative ML methods
include artificial neural networks (ANN) [6,8,9], case-based rea-
soning (CBR) [9,10] (also referred to as analogy-based estima-
tion [11,12] or estimation by analogy [13]), and classification
and regression trees (CART) [5,14,15].

When targeting estimation accuracy, considerable effort has
been devoted to improving ML methods [1,16–21]. For the empir-
ical validations, ML algorithms are routinely tested on the SCE
datasets. Data preprocessing (DP) is a fundamental stage of the

http://dx.doi.org/10.1016/j.infsof.2015.07.004
0950-5849/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +852 56013641.
E-mail addresses: jianhuang7-c@my.cityu.edu.hk (J. Huang), yanfu.li@centrale

supelec.fr (Y.-F. Li), minxie@cityu.edu.hk (M. Xie).

Information and Software Technology 67 (2015) 108–127

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.07.004&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.07.004
mailto:jianhuang7-c@my.cityu.edu.hk
mailto:yanfu.li@centralesupelec.fr
mailto:yanfu.li@centralesupelec.fr
mailto:minxie@cityu.edu.hk
http://dx.doi.org/10.1016/j.infsof.2015.07.004
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


ML application, which has been reported to have significant
impacts onto the performances of ML methods [18].

To the knowledge of the authors, there is very few research
work focused on the DP techniques in the SCE literature. In many
situations the DP techniques, such as feature selection (FS) [7,22–
24] and case selection (CS) [4,11,12,25], have been considered as
a necessary step for CBR while for other ML methods, such as
ANN and CART, they might be ignored. In the literature some stud-
ies focus on analyzing DP techniques. Strike et al. [26] simulated
various incomplete data and found that the best regression model
could be obtained from missing-data imputation with Z-score
standardization. The combination of scaling scheme and
missing-data treatment (MDT) is firstly analyzed; however, their
impacts onto the ML method were not studied. Many studies pro-
pose one or more DP techniques to deal with a specific issue in SCE,
such as data missingness [27–29], redundant or irrelevant features
[10,25], or abnormal cases [30,31]. But they did not study the effec-
tiveness of different DP techniques. Keung et al. [32] first time con-
cluded that the performance of a ML method could be significantly
altered by a DP technique, such as scaling and FS. But the number
of DP techniques they considered is limited and the effectiveness of
combined DP techniques are not investigated.

From the analysis above, an empirical study on multiple DP
techniques for ML methods is needed to promote much more care-
ful use of the DP techniques rather than taking one or more DP
approaches as granted. The obtained results would be beneficial
to the future ML-based SCE studies.

The rest of this paper is organized as follows: Section 2 presents
a literature survey on DP applications; Section 3 presents the four
datasets used in this study, an overview on the ML methods (i.e.
ANN, CBR and CART), and the experimental design; Section 4 pre-
sents the experiment results and analysis; Section 5 discusses the
threats to four types of validity; Section 6 concludes this work and
points out future research directions.

2. Related work

2.1. Literature survey

The application of ML algorithm requires the presence of data in
a mathematically feasible format through data preprocessing. DP
techniques consist of data reduction, data projection and
missing-data treatment. Data reduction aims to decrease the size
of the datasets by means of feature selection (FS) or case selection
(CS). Data projection intends to transform the appearance of the
data, e.g. scaling, which scales all features into a predefined same
range. Missing-data treatments (MDTs) include deleting missing
values [12,15,16,33,34] and/or replacing them with the estimates
[13,35]. Moreover, the logarithm transformation [36,37] is fre-
quently applied for linear regression to retain the normality
assumption for the correct implementation of linear regression. It
is indeed an important step for regression models to ensure the
normality of the residual [38–41]. On the other hand, logarithm
does not frequently appear in ML studies. In our survey, there
are only three publications [32,42–44] that clearly used logarithm
for ML methods. This study aims to investigate the effectiveness of
the mainstream DP techniques for ML methods. Consider both
scaling and logarithmic transformation could help reduce ranges,
we choose to include scaling as a candidate DP method in our
experiments.

To reveal the situations of DP technique utilization in the liter-
ature, we first conduct a survey of relevant ML papers from 2005 to
present published on the following journals: IEEE Transactions on
Software Engineering (IEEE TSE), Empirical Software Engineering

(ESE), Journal of Systems Software (JSS), Information and Software
Technology (IST), and Software Quality Journal (SQJ), and the follow-
ing major conference proceedings: International Conference on
Software Engineering (ICSE), International Symposium on Empirical
Software Engineering and Measurement (ESEM), and International
Conference on Predictive Models in Software Engineering (PROMISE).
Both the individual studies of ML methods and the comparative
studies (within ML methods or between ML and other methods)
are included. We summarize the publications according to the
ML methods and the DP techniques applied. In specific, we explore
the use of MDT, scaling, FS and CS. These 48 publications are pre-
sented in Table 1. It is shown that most publications have
employed certain DP techniques. 12 works [4,8,11,44–52] only
mention single step of DP. Table 1 also shows that many studies
use combined DPs. For examples, there are 7 of totally 48 works
combined only scaling and FS/CS [17,24,31,53–56], and 7 of 48
works combined only MDTs and FS/CS [16,20,33,57–60]. FS and
CS have been considered as a necessary step for CBR in several
studies [4,11,20,23,30,34,48,49,53,56–58,61–64]. However, there
is no empirical study to investigate more DPs and their
combinations.

The following section presents an overview on the four types of
DP methods and summarizes the evidence and arguments in the
literature that lead to the research questions of this study and
serve as the foundation for the empirical work.

2.2. Data preprocessing techniques

2.2.1. Missing-data treatments
Due to the high cost of gathering and reporting data from pro-

jects, development teams are less focused on data collection [28].
The incomplete datasets also frequently appear across the SCE
studies (e.g. the ISBSG database and PROMISE datasets)
[13,21,28,29,34,59,72]. The missing values have significant impacts
on ML estimation performances, as reported by [19,28,46].

There are many MDTs in the literature. They often include:
deletion methods (listwise deletion and pairwise deletion
[28,50,71,72]), and imputation methods (mean imputation,
hot-deck imputation, cold-deck imputation, regression imputation,
etc.) [13,20,35,56,57,61]. It is noted that the deletion methods,
especially listwise deletion (LD), widely used as a default approach
for dealing with missing values, can result in discarding large pro-
portions of datasets in cases and introducing biasness [28,34]. As
another solution of MDT, imputation requires more extensive
and complicated statistical and computational analysis [26,28]
and also includes natural prediction error [34]. Mean imputation
(MI) imputes each missing value with the mean of observed values
and preserves the information of data. However, as the simplest
imputation method it may cause to diminish the variance of vari-
ables [26].

According to results of our survey in Table 1, LD is the most
popular method followed by MI. Particularly, 13 works [12,15,16,
21,31,33,34,58–60,64,66,68] regarded LD as the default DP method
for missing values. However, some studies show that MI or k-NN
imputations are better than LD [26–28,73]. In this study, we will
validate the superiority of MI over LD.

2.2.2. Scaling
Scaling generally refers to measurements or assessments con-

ducted under exact, specified and repeatable conditions. In ML,
scaling transforms feature values according to a defined rule so
that all scaled features have the same degree of influence [36]
and thus the method is immune to the choice of units [71], which
is a major stage for ML methods. Normally, the intervals of [0,1]
and [�1,1] are used to be the target of scaling, as shown in Eq. (1).

J. Huang et al. / Information and Software Technology 67 (2015) 108–127 109



Download English Version:

https://daneshyari.com/en/article/6948221

Download Persian Version:

https://daneshyari.com/article/6948221

Daneshyari.com

https://daneshyari.com/en/article/6948221
https://daneshyari.com/article/6948221
https://daneshyari.com

