
Information and Software Technology 67 (2015) 207–219

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Claims about the use of software engineering practices in science:

A systematic literature review

Dustin Heaton, Jeffrey C. Carver∗

Department of Computer Science, University of Alabama, Tuscaloosa, Alabama, USA

a r t i c l e i n f o

Article history:

Received 26 March 2015

Revised 15 June 2015

Accepted 27 July 2015

Available online 7 August 2015

Keywords:

Computational science

Systematic literature review

Scientific software

a b s t r a c t

Context: Scientists have become increasingly reliant on software in order to perform research that is too time-

intensive, expensive, or dangerous to perform physically. Because the results produced by the software drive

important decisions, the software must be correct and developed efficiently. Various software engineering

practices have been shown to increase correctness and efficiency in the development of traditional software.

It is unclear whether these observations will hold in a scientific context.

Objective: This paper evaluates claims from software engineers and scientific software developers about 12

different software engineering practices and their use in developing scientific software.

Method: We performed a systematic literature review examining claims about how scientists develop soft-

ware. Of the 189 papers originally identified, 43 are included in the literature review. These 43 papers contain

33 different claims about 12 software engineering practices.

Results: The majority of the claims indicated that software engineering practices are useful for scientific

software development. Every claim was supported by evidence (i.e. personal experience, interview/survey,

or case study) with slightly over half supported by multiple forms of evidence. For those claims supported

by only one type of evidence, interviews/surveys were the most common. The claims that received the most

support were: “The effectiveness of the testing practices currently used by scientific software developers is

limited” and “Version control software is necessary for research groups with more than one developer.” Addi-

tionally, many scientific software developers have unconsciously adopted an agile-like development method-

ology.

Conclusion: Use of software engineering practices could increase the correctness of scientific software and

the efficiency of its development. While there is still potential for increased use of these practices, scientific

software developers have begun to embrace software engineering practices to improve their software. Addi-

tionally, software engineering practices still need to be tailored to better fit the needs of scientific software

development.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Scientists and engineers often use computational modeling to re-

place (or augment) physical experimentation. For the remainder of

this paper we will refer to the software created by these scientists

and engineers as scientific software. The following examples help to

illustrate some of the key reasons why computational models are be-

coming increasingly important in science and engineering domains.

First, computational models allow scientists to react to events in near

∗ Corresponding author. Tel.: +1- 205- 348- 9829.

E-mail addresses: dwheaton@crimson.ua.edu (D. Heaton), carver@cs.ua.edu

(J.C. Carver).

real-time. In meteorology, computational models allow scientists to

adjust their forecasts based upon current conditions and analyze the

potential effects of changing conditions. Without such models, me-

teorologists would have to extrapolate from historical data, which is

time-consuming and too slow for real-time forecasts. Second, com-

putational models allow scientists to study phenomena that occur at a

very slow pace in reality. In climate science or geology, the slow pace

of many natural phenomena make it infeasible for scientists to rely

solely on empirical observations to draw conclusions. Computational

models allow scientists to study these phenomena at a much more

rapid pace. Third, computational models allow scientists to study phe-

nomena that are too precise for manual observation. In astronomy and

astrophysics, the combination of software models and advances in

digital imaging systems have combined to allow scientists to discover

http://dx.doi.org/10.1016/j.infsof.2015.07.011

0950-5849/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2015.07.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:dwheaton@crimson.ua.edu
mailto:carver@cs.ua.edu
http://dx.doi.org/10.1016/j.infsof.2015.07.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.07.011&domain=pdf


208 D. Heaton, J.C. Carver / Information and Software Technology 67 (2015) 207–219

new solar systems that are too faint for human detection. Finally,

computational models allow scientists to study phenomena that are too

dangerous to study experimentally. In astrophysics, it is much safer for

scientists to use computational models to explore the effects of var-

ious types of nuclear reactions compared with conducting physical

experiments.

As these examples highlight, scientists and engineers are increas-

ingly reliant on the results of computational modeling to inform their

decision-making process. Because of this reliance, it is vital for the

software to return accurate results in a timely fashion. While the cor-

rectness of the scientific and mathematical models that underlie the

software is a key factor in the accuracy of results, the correctness and

quality of the software that implements those models is also highly

important. Additionally, the software’s performance must be fast

enough to provide results within the desired time window. To com-

plicate these requirements, scientific software is typically complex,

large, and long-lived. The primary factor influencing the complexity is

that scientific software must conform to sophisticated mathematical

models [1]. The size of the programs also increases the complexity, as

scientific software can contain more than 100,000 lines of code [2,3].

Finally, the longevity of these projects is problematic due to devel-

oper turn-over and the requirement to maintain large existing code-

bases while developing new code. Section 2 provides more details

about these characteristics of scientific software.

In the more traditional software world, software engineering re-

searchers have developed various practices that can help teams ad-

dress these factors so that the resulting software will have fewer

defects and have overall higher quality. For example, documentation

and design patterns help development teams manage large, complex

software projects. Version control is useful in long-lived projects as

a means to help development teams manage multiple software ver-

sions and track changes over time. Finally, peer code reviews sup-

port software quality and longevity, by helping teams identify faults

early in the process (software quality) and by providing an avenue for

knowledge transfer to reduce knowledge-loss resulting from devel-

oper turn-over (longevity).

Furthermore, software engineering practices are important for ad-

dressing productivity problems in scientific software. Even though

the speed of the hardware is rapidly increasing, the additional com-

plexity makes it more difficult for scientists to be productive de-

velopers. According to Faulk et al., the bottlenecks in the scientific

development process are the primary barriers to increasing soft-

ware productivity and these bottlenecks cannot be removed with-

out a fundamental change to the scientific software development

process [4].

The previous paragraphs highlighted the software quality and

productivity problems that scientific software developers face. Be-

cause developers of more traditional software (i.e. business or IT)

have used software engineering practices to address these problems,

it is not clear why scientific software developers are not using them.

Throughout the literature, various CSE researchers and software en-

gineering researchers have drawn conclusions about the use of soft-

ware engineering practices in the development of scientific software.

To date, there has not been a comprehensive, systematic study of

these claims and their supporting evidence. Without this systematic

study, it is difficult to picture the actual effectiveness of SE practices

in scientific software development. Based on our own experiences in-

teraction with scientific software developers, we can hypothesize at

the outset that the relatively low utilization of software engineering

practices is the result, at least in part, of two factors: (1) the con-

straints of the scientific software domain (Section 2) and (2) the lack

of formal training of most scientific software developers.

This paper has three primary contributions.

1. A list of the software engineering practices used by scientific soft-

ware developers;

2. An analysis of the effectiveness of those practices; and

3. An analysis of the evidence used to show effectiveness.

Therefore, the goal of this paper is to analyze information re-

ported in the literature in order to develop a list of software en-

gineering practices researchers have found to be effective and a

list of practices researchers have found to be ineffective. In order

to conduct this analysis, we performed a systematic literature review

to examine the claims made about software engineering practices in

the scientific software literature and in the software engineering lit-

erature. In this paper, we define a claim as: any argument made about

the value of a software engineering practice, whether or not there is any

evidence given to support the argument. In particular, we are interested

in identifying those claims that are supported by empirical evidence.

The remainder of this paper is organized as follows: Section 2

provides background on previous research about SE for scientific

software. Section 3 describes the research methodology used in this

systematic literature review. Section 4 reports the scientists’ and soft-

ware engineers’ claims about SE for scientific software.

2. Background

Traditional software development focuses on the process of de-

veloping software to fulfill the needs of a customer. This focus on the

process has led software engineers to emphasize quality of the code

itself. Scientific software, on the other hand exists primarily to pro-

vide insight into important scientific or engineering questions that

would be difficult to answer otherwise. Because the goal for scientific

software developers is the creation of new scientific knowledge, the

emphasis placed on software quality (i.e. correctness of code, main-

tainability, and reliability) has been historically lower than seen in

more traditional software engineering [1]. Furthermore, even for de-

velopers who place a great deal of emphasis on software quality, it is

likely that at least some existing software engineering practices must

be tailored to be effective in scientific software development [5].

The remainder of this paper focuses on the suitability of existing

software engineering practices to address the issues facing scientific

software developers. To provide some background, it is important to

describe the scientific software community. While the scientific soft-

ware community is not monolithic, Basili et al. [6] enumerated three

characteristics that are common across the majority of the commu-

nity. In addition to these common characteristics, Basili et al. [6] also

enumerate three variables that differentiate projects within the sci-

entific software community. The following subsections describe the

common and variable aspects, respectively.

2.1. Common characteristics of scientific software development

According to Basili et al., [6], there are three characteristics that

provide a backdrop that is essential to understand the claims that

have been made regarding scientific software development.

1. Source of software development knowledge - Rather than ob-

taining their software development knowledge via a traditional

software engineering (or computer science) education, many sci-

entific software developers obtain their knowledge from other

scientific developers (who also lack formal training). This lack of

formal training often leaves scientific software developers blind

to much of the field of software engineering that could provide

much greater control over the quality of their code. Additionally,

for those software engineering principles with which they are

aware, scientific developers may be unsure of how to tailor and

apply them in their particular environment. Carver [7] also ob-

served this characteristic.

2. Unplanned increase in project size - Rather than expending ef-

fort to initially design unproven software to be useful on a large



Download	English	Version:

https://daneshyari.com/en/article/6948228

Download	Persian	Version:

https://daneshyari.com/article/6948228

Daneshyari.com

https://daneshyari.com/en/article/6948228
https://daneshyari.com/article/6948228
https://daneshyari.com/

