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a b s t r a c t

Context: Recent studies showed that combining present data, which are derived from the current software

version, with past data, which are derived from previous software versions, can improve the accuracy of

change impact predictions. However, for a specific program, existing combined techniques can rely only on

version history of that program, if available, and the prediction results depend on the variety of available

change impact examples.

Objective: We propose a hybrid probabilistic approach that predicts the change impact for a software entity

using, as training data, existing version histories of whatever software systems.

Method: Change-impact predictors are learned from past change impact graphs (CIGs), extracted from the

version history, along with their associations with different influencing factors of change propagation. The

learning examples in CIGs are not specific to the software entities that are covered in those examples, and

the change propagation influencing factors are structural and conceptual dependencies between software

entities. Once our predictors are trained, they can predict change impacts regardless of the version history

of the software under-analysis. We evaluate our approach using four systems in two scenarios. First, we use

as training data the CIGs extracted from previous versions of the system under-analysis. Second, for each

analyzed system, we use only the training data extracted from the other systems.

Results: Our approach produces accurate predictions in terms of both precision and recall. Moreover, when

training our classifiers with a large variety of CIGs extracted from the change histories of different projects,

the recall scores of predicted impact sets were significantly improved.

Conclusion: Our approach produces accurate predictions for new classes without recorded change histories,

as well as for old classes. For the systems considered in our evaluation, once our approach is trained with a

variety of CIGs it can predict change impacts with good recall scores.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Change impact analysis (CIA) continues to gain a considerable at-

tention in software engineering research [1–3]. In the field of impact

set prediction, the ultimate goal is to identify program elements that

should be modified in order to accommodate a change request, and

hence assist maintainers in estimating the consequences and cost of

a given change [4].

In literature, many CIA techniques have been proposed to predict

the impact of change requests at code level [3]. Those techniques

use a variety of data on the software under analysis, extracted by
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static (e.g., [5–8]) or dynamic (e.g., [9,10]) analysis, and/or by min-

ing software repositories (MSR) e.g., [11–14]. In another category, a

considerable body of CIA techniques in the literature aims at pre-

dicting change coupling (co-change) instead of identifying the im-

pact set of a specific change request. Such MSR-based techniques ex-

ploit co-change histories with the heuristic that software entities that

changed together in the past are likely to change together in the fu-

ture [15–20]. In these techniques, a mandatory prerequisite is that

the software version history must be available and well established.

Moreover, even if the software version history is available, in these

techniques, association rules (called change patterns) are specific to

the existing software entities which have changed in the past.

Recent studies showed that combining present data (e.g., depen-

dencies between software entities in the present software snapshot

of the system under-analysis) with past data, which are derived from

multiple prior software versions (i.e., MSR-based techniques), can
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Fig. 1. Overview.

significantly improve change impact predictions [11–13]. Here again,

for a specific software/entity, existing techniques rely heavily on the

version history of that software/entity, when this history is avail-

able and well established. Indeed, the accuracy of change impact

predictions depends on the number and variety of impact observa-

tions recorded in the software version history for that specific pro-

gram/entity. For instance, consider the prediction of the impact set of

a change ch, which consists of removing a method and modifying an-

other method in a class X. If X is a new class, or if it did not experience

frequent changes similar to ch in the past, the predictions will not be

reliable.

This paper proposes a novel contribution which uses dependen-

cies between prior changes (i.e., prior Change Impact Graphs: CIGs

shortly), instead of prior co-changes or evolutionary coupling, as past

data to train predictors of the impact set of future changes.

More precisely, we propose a probabilistic approach that initially

learns a set of Bayesian classifiers to predict the impact of atomic

change types. Then, it combines the results of these classifiers with

different integration strategies to predict the impact of a complex

change. Our approach can predict impact sets using, as input, only

dependencies that can propagate the change between software enti-

ties, extracted from the current version of the software system under-

analysis (i.e., structural dependencies, conceptual dependencies, or

both). However, to allow the prediction, Bayesian classifiers have to

be trained with prior CIGs and the dependencies associated to those

prior CIGs. Hence, for a specific change request ch within a class X, the

prediction of ch’s impact set is done by using the classifiers previously

trained with change-impact examples in prior CIGs (with their cor-

responding dependencies) that involve changes similar to the ones

involved in ch. A major advantage over existing impact prediction

techniques is that, these prior CIGs can be extracted by comparing

successive versions, available, of whatever software systems. Indeed,

our approach does not draw any assumptions on the relations be-

tween the software system/entities under-analysis and the software

systems/entities that are used to extract training data –with the ex-

ception that all the used software systems should belong to the same

programming domain (e.g., Object-Oriented) and, hence, they share

the same influencing factors of change propagation.

We evaluate our approach with two different scenarios:

• Scenario 1 – Use change history of the system under-analysis: the

system under-analysis has an available version history, and thus

we extract prior CIGs from its change history to train the classi-

fiers.

• Scenario 2 – Borrow change histories of different systems: regard-

less of change history of the system under-analysis, in this sce-

nario, we borrow the prior CIGs from other systems and use them

as training data. Although used systems for extracting prior CIGs

may differ from the system under-analysis, in terms of coding

practices, structure and relationships between software entities,

we believe that this scenario can improve the accuracy of predic-

tion results due to the increased number and variety of used CIGs

for training the classifiers.

We applied both scenarios on four Object-Oriented Java systems

having from 5 to 22 released versions, and the size of used last re-

leases, goes from 69 to 331 classes. The results show that our ap-

proach produces good predictions (in terms of precision and recall)

in both above-mentioned scenarios. Moreover, we show that, for our

study sample, there is no difference in terms of prediction precision

when the training data is taken from the history of the system under

analysis (Scenario 1) or borrowed from the histories of other systems

(Scenario 2). However, the recall is improved in the case of Scenario

2 (statistically significant).

The reminder of this paper is organized as follows. Section 2 de-

scribes our approach for building and using the change prediction

models. The setting and the results of our empirical study are detailed

respectively in Sections 3 and 4, together with the threats to validity

(Section 5). Section 6 gives an overview of the different approaches

used for change impact analysis. Finally, a conclusion is provided in

Section 7.

2. Prediction approach

This section presents our probabilistic approach to predict change

impact. Our approach targets the context of object-oriented software

systems at the class granularity level.

2.1. Overview

As shown in Fig. 1, our approach has two phases: learning and pre-

diction. In the learning phase, we train Bayesian classifiers to predict

the impact of individual atomic changes (e.g., change method, add at-

tribute, remove class). Actually, we define a Bayesian classifier for each

atomic change type. For a specific atomic change ac(T1) in a class T1,

the trained Bayesian classifier, which is associated to the ac’s type,

determines the probability that another class T2 will be impacted by

ac(T1), knowing the dependencies between T1 and T2.
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