
Investigating Architectural Technical Debt accumulation and refactoring
over time: A multiple-case study

Antonio Martini ⇑, Jan Bosch, Michel Chaudron
Computer Science and Engineering, Software Engineering, Chalmers University of Technology | Gothenburg University, Göteborg, Sweden

a r t i c l e i n f o

Article history:
Received 30 November 2014
Received in revised form 8 July 2015
Accepted 10 July 2015
Available online xxxx

Keywords:
Architectural Technical Debt
Software management
Software architecture
Agile software development
Software life-cycle
Qualitative model

a b s t r a c t

Context: A known problem in large software companies is to balance the prioritization of short-term with
long-term feature delivery speed. Specifically, Architecture Technical Debt is regarded as sub-optimal
architectural solutions taken to deliver fast that might hinder future feature development, which, in turn,
would hinder agility.
Objective: This paper aims at improving software management by shedding light on the current factors
responsible for the accumulation of Architectural Technical Debt and to understand how it evolves over
time.
Method: We conducted an exploratory multiple-case embedded case study in 7 sites at 5 large compa-
nies. We evaluated the results with additional cross-company interviews and an in-depth,
company-specific case study in which we initially evaluate factors and models.
Results: We compiled a taxonomy of the factors and their influence in the accumulation of Architectural
Technical Debt, and we provide two qualitative models of how the debt is accumulated and refactored
over time in the studied companies. We also list a set of exploratory propositions on possible refactoring
strategies that can be useful as insights for practitioners and as hypotheses for further research.
Conclusion: Several factors cause constant and unavoidable accumulation of Architecture Technical Debt,
which leads to development crises. Refactorings are often overlooked in prioritization and they are often
triggered by development crises, in a reactive fashion. Some of the factors are manageable, while others
are external to the companies. ATD needs to be made visible, in order to postpone the crises according to
the strategic goals of the companies. There is a need for practices and automated tools to proactively
manage ATD.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Large software industries strive to make their development pro-
cesses fast and more responsive, minimizing the time between the
identification of a customer need and the delivery of a solution. The
trend in the last decade has been the employment of Agile
Software Development (ASD) [1]. At the same time, the responsive-
ness in the short-term deliveries should not lead to less respon-
siveness in the long run. To illustrate such a phenomenon, a
financial metaphor has been coined, which relates taking
sub-optimal decisions in order to meet short-term goals to taking
a financial debt, which has to be repaid with interests in the long
term. Such a concept is referred as Technical Debt (TD), and
recently it has been recognized as a useful basis for the

development of theoretical and practical frameworks [2]. Tom
et al. [3] have explored the TD metaphor and outlined a first frame-
work in 2013. Part of the overall TD is to be related to architecture
sub-optimal decisions, and it is regarded as Architecture Technical
Debt (ADT) [4]. More precisely, ATD is regarded as implemented
solutions that are sub-optimal with respect to the quality attri-
butes (internal or external) defined in the desired architecture
intended to meet the companies’ business goals.

ATD has been recognized as part of TD in a recent (2015) sys-
tematic mapping study on TD [4]. However, such study highlights
several deficiencies in the current body of knowledge: lack of reli-
able industrial studies, lack of focus on architecture anti-patterns
and lack of studies involving the whole TD management process.
In this paper we aim at filling such current gaps by investigating,
in several companies, the overall phenomenon of accumulation
and refactoring of ATD. The study of such subject would also con-
tribute to ASD frameworks, by highlighting activities for enhancing
agility in the task of developing and maintaining software architec-
ture in large projects [5].

http://dx.doi.org/10.1016/j.infsof.2015.07.005
0950-5849/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: antonio.martini@chalmers.se (A. Martini), jan.bosch@

chalmers.se (J. Bosch), michel.chaudron@cse.gu.se (M. Chaudron).

Information and Software Technology xxx (2015) xxx–xxx

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

Please cite this article in press as: A. Martini et al., Investigating Architectural Technical Debt accumulation and refactoring over time: A multiple-case
study, Inform. Softw. Technol. (2015), http://dx.doi.org/10.1016/j.infsof.2015.07.005

http://dx.doi.org/10.1016/j.infsof.2015.07.005
mailto:antonio.martini@chalmers.se
mailto:jan.bosch@chalmers.se
mailto:jan.bosch@chalmers.se
mailto:michel.chaudron@cse.gu.se
http://dx.doi.org/10.1016/j.infsof.2015.07.005
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof
http://dx.doi.org/10.1016/j.infsof.2015.07.005


In the context of large-scale ASD, our research questions are:

RQ1: What factors cause the accumulation of ATD?
RQ2: How is ATD accumulated and refactored over time?
RQ3: What possible refactoring strategies can be employed for
managing ATD?

In this paper we have employed a 18 months long, multiple-
case study involving 7 different sites in 5 large Scandinavian com-
panies in order to shed light on the phenomenon of accumulation
and refactoring of ATD. We have analyzed the qualitative data
obtained from more than 50 h of formal interviews complemented
with continuous informal meetings with key roles involved in the
architectural work, using a combination of inductive and deductive
approach proper of Grounded Theory. We have qualitatively devel-
oped and evaluated a taxonomy of the factors to inform RQ1 and a
set of models to inform RQ2. We have also derived some prelimi-
nary conclusions on which refactoring strategies can be applied
and what effects they have to inform RQ3.

The main contributions of the papers are:

� A taxonomy of the causes for ATD: we present the factors for
the explanation of the phenomena such as accumulation and
refactoring of ATD. These factors might be studied and treated
separately, and offer a better understanding of the overall
phenomenon.
� Two qualitative models of the trends in accumulation and refac-

toring of ATD over time.
– Crisis model – Shows the strictly increasing trend of ATD

accumulation and how it eventually reaches a crisis point.
We describe the evidences related to the occurrence of the
crisis point and we connect such phenomenon to the differ-
ent factors and their influence on the accumulation.

– Phases model – Shows when ATD is currently accumulated
and refactored during different software development
phases. It helps identifying problem areas and points in time
for the development of practices that would 1) avoid accu-
mulation of ATD and/or 2) ease the refactoring of ATD.
Such practices would be aimed at delaying the crisis point.

� Possible refactoring strategies: we analyze how different refac-
toring strategies might lead to best- and worst-case scenarios
with respect to crisis points.
� A detailed description of an additional and in-depth industrial

case, which contributes to empirically evaluate the factors and
to analyze the relationships among them in a specific context.

The rest of the paper is structured as follows: Section 2 gives the
reader more references and background on ATD and on the concep-
tual framework used in this study. In Section 3 we explain our
research design: overall design, description of the cases, methods
for data collection and analysis and evaluation of results. In
Section 4 we list the results: factors causing ATD, models of accu-
mulation of ATD over time, possible refactoring strategies, descrip-
tion of the in-depth case-study and the evaluation of results. In
Section 5 we examine how the results inform the RQs, we discuss
practical and theoretical implications of this study and we discuss
the degree of validity of each result. We also point at limitations
and open issues for future research, and we discuss the related
work. We summarize the conclusions in Section 6.

2. Architecture and Technical Debt

2.1. Definition of ATD

ATD is regarded [3] as ‘‘sub-optimal solutions’’ with respect to
an optimal architecture for supporting the business goals of the

organization. Specifically, we refer to the architecture identified
by the software and system architects as the optimal trade-off
when considering the concerns collected from the different stake-
holders. In the rest of the paper, we call the sub-optimal solutions
inconsistencies between the implementation and the architecture,
or violations, when the optimal architecture is precisely expressed
by rules (for example for dependencies among specific compo-
nents). However, it is important to notice that (in our studied
cases) such optimal trade-off might change over time, as explained
in this paper, due to business evolution and to information col-
lected from implementation details. Therefore, it is not correct to
assume that the sub-optimal solutions can be completely identi-
fied and managed from the beginning.

In the next section, we mention some classes of examples of
what can be considered ATD. Such examples are extracted from
another paper by the same authors on the same subject [7].

2.2. Examples of ATD

2.2.1. Dependency violations
The presence of architectural dependencies (for example at dif-

ferent component levels) which are considered forbidden in the
(context-specific) architecture can be considered ATD. An example
of this class of items is represented by a component that, when
executed, should not trigger the execution of another component,
as specified by the architects/architecture. A study on this problem
has been conducted also by Nord et al. [8].

2.2.2. Non-uniformity of patterns and policies
Patterns and policies defined by the architecture (and the archi-

tects) might not be kept consistent through the system. For exam-
ple, there might be a name convention applied in part of the
system that is not followed in another part of the system.
Another example is the presence of different design or architec-
tural patterns used to implement the same functionality, such as
different interaction patterns used among different components
(we intend those differences that are not motivated by precise
design constraints).

2.2.3. Code duplication (non-reuse)
Quite recognized in literature and in practice is the presence of

very similar code (if not identical) in different parts of the system,
especially in different products, not grouped into a reused
component.

2.2.4. Temporal properties of inter-dependent resources
Some resources might need to be accessed by different part of

the system (for simplicity we will take the example of having dif-
ferent components accessing the same resource). In these cases,
the way in which a component interacts with the resource might
change the interaction of other components with the same
resource. This aspect is especially related to the temporal dimen-
sion: for example, the order with which two components change
the status of a database or access it, would change the behavior
of the system. For this reason, specific scheduling patterns can be
designed, which are used for assuring the correct interaction of
components. As a concrete example, we can mention the conven-
tion of having only synchronous calls to a certain component. An
ATD item of this category is represented by the non-application
of such patterns by some developers or teams.

2.2.5. Sub-optimal mechanism for non-functional requirements
Some non-functional requirements, such as scalability, perfor-

mance or signal reliability, need to be recognized before or early
during the development and need to be tested. The ATD items rep-
resent the lack of an implementation that would assure the

2 A. Martini et al. / Information and Software Technology xxx (2015) xxx–xxx

Please cite this article in press as: A. Martini et al., Investigating Architectural Technical Debt accumulation and refactoring over time: A multiple-case
study, Inform. Softw. Technol. (2015), http://dx.doi.org/10.1016/j.infsof.2015.07.005

http://dx.doi.org/10.1016/j.infsof.2015.07.005


Download English Version:

https://daneshyari.com/en/article/6948233

Download Persian Version:

https://daneshyari.com/article/6948233

Daneshyari.com

https://daneshyari.com/en/article/6948233
https://daneshyari.com/article/6948233
https://daneshyari.com

