
Understanding the triaging and fixing processes of long lived bugs

Ripon K. Saha ⇑, Sarfraz Khurshid, Dewayne E. Perry
Center for Advanced Research in Software Engineering (ARiSE), Department of Electrical and Computer Engineering, The University of Texas at Austin, USA

a r t i c l e i n f o

Article history:
Received 24 June 2014
Received in revised form 24 February 2015
Accepted 1 March 2015
Available online 11 March 2015

Keywords:
Bug tracking
Bug triaging
Bug survival time

a b s t r a c t

Context: Bug fixing is an integral part of software development and maintenance. A large number of bugs
often indicate poor software quality, since buggy behavior not only causes failures that may be costly but
also has a detrimental effect on the user’s overall experience with the software product. The impact of
long lived bugs can be even more critical since experiencing the same bug version after version can be
particularly frustrating for user. While there are many studies that investigate factors affecting bug fixing
time for entire bug repositories, to the best of our knowledge, none of these studies investigates the
extent and reasons of long lived bugs.
Objective: In this paper, we investigate the triaging and fixing processes of long lived bugs so that we can
identify the reasons for delay and improve the overall bug fixing process.
Methodology: We mine the bug repositories of popular open source projects, and analyze long lived bugs
from five different perspectives: their proportion, severity, assignment, reasons, as well as the nature of
fixes.
Results: Our study on seven open-source projects shows that there are a considerable number of long
lived bugs in each system and over 90% of them adversely affect the user’s experience. The reasons for
these long lived bugs are diverse including long assignment time, not understanding their importance
in advance, etc. However, many bug-fixes were delayed without any specific reasons. Furthermore,
40% of long lived bugs need only small fixes.
Conclusion: Our overall results suggest that a significant number of long lived bugs may be minimized
through careful triaging and prioritization if developers could predict their severity, change effort, and
change impact in advance. We believe our results will help both developers and researchers better to
understand factors behind delays, improve the overall bug fixing process, and investigate analytical
approaches for prioritizing bugs based on bug severity as well as expected bug fixing effort.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Software development and maintenance is a complex process.
Although developers and testers try their best to make their
software error free, in practice software ships with bugs. The num-
ber of bugs in software is a significant indicator of software quality
since bugs can adversely affect users experience directly. Therefore,
developers are generally very active in finding and removing bugs.

To ensure high software quality for each release,
developers/managers triage bugs carefully and schedule the bug
fixing tasks based on their severity and priority. Despite such a rig-
orous process, there are still many bugs that live for a long time.
We believe the impact of these long lived bugs (for our study, bugs
that are not fixed within one year after they are reported) is even

more critical since the users may experience the same failures
version after version. Therefore, it is important to understand the
extent and reasons of these long lived bugs so that we can improve
software quality.

A number of previous studies have investigated the overall
factors affecting bug fix time. Giger et al. [8] empirically investi-
gated the relationships between bug report attributes and the time
to fix. Zhang et al. [31] predicted overall bug fix time in commercial
projects. Canfora et al. [6] used survival analysis to determine the
relationship between the risk of not fixing a bug within a given
time frame and specific code constructs changed when fixing the
bug. Zhang et al. [30] examined factors affecting bug fixing time
along three dimensions: bug reports, source code involved in the
fix, and code changes that are required to fix the bug.

While these studies are useful in understanding the overall
factors related to bug fix time, we know of no study that has specifi-
cally investigated long lived bugs to understand why they take such
a long time to be fixed and how important they are. We point out

http://dx.doi.org/10.1016/j.infsof.2015.03.002
0950-5849/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: ripon@utexas.edu (R.K. Saha), khurshid@ece.utexas.edu

(S. Khurshid), perry@ece.utexas.edu (D.E. Perry).

Information and Software Technology 65 (2015) 114–128

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.03.002&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.03.002
mailto:ripon@utexas.edu
mailto:khurshid@ece.utexas.edu
mailto:perry@ece.utexas.edu
http://dx.doi.org/10.1016/j.infsof.2015.03.002
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


that analyzing entire bug datasets using various machine learning
or data mining techniques (as done in previous work) is not suffi-
cient in understanding long lived bugs due to the imbalanced
dataset.1 Imbalanced datasets are a major problem in most data min-
ing applications since machine learning algorithms can be biased
towards the majority class due to over-prevalence [12]. We expect
(and our results also support) that the proportion of long-lived bugs
would be lot less than 50% of the total bugs, thus resulting an imbal-
anced dataset. Therefore, if we automatically analyze all the bug
reports using a standard data mining technique, it is highly likely that
the main factors behind long lived bugs will get lost. In this paper, we
conduct an exploratory study focused solely on long lived bugs to
understand their extent and reasons with respect to following
research questions:

1. What proportion of the bugs are long lived? The answer to
this question is important since if there are few long lived bugs,
there may be little reason to worry.

2. How important are long lived bugs in terms of severity? It is
important to understand how crucial these bugs were from the
perspective of both developers and users. If they are minor or triv-
ial bugs, their impact would be less on overall software quality.

3. Where is most of the time spent in the bug fixing process?
The answer to this question is important to identify the time
consuming phases so that developers as well as researchers
can work on improving the process involving this phase.

4. What are common reasons for long lived bugs? To improve
the bug fixing process, first we need to understand the underly-
ing reasons for delays. Delineating the common reasons for long
lived bugs will help researchers deal with the problem more
systematically.

5. What is the nature of long lived bug fixes? The answer to this
question will help us in better understanding the bug fixing
process, estimating change efforts, and so on, which will be use-
ful in exploring potential approaches for improving overall bug
fixing processes.

We study seven open source projects: JDT, CDT, PDE, and
Platform from the Eclipse product family, written in Java,2 and
the Linux Kernel, WineHQ, and GDB, written in C. Our key observa-
tions are summarized below:

1. Despite advances in software development and maintenance
processes, there are a significant number of bugs in each project
that survive for more than one year.

2. More than 90% of long lived bugs affect users’ normal working
experiences and thus are important to fix. Moreover, there are
duplicate bug reports for these long lived bugs, which indicate
the users’ demand for fixing them.

3. The average bug assignment time of these bugs was more than
one year despite the availability of a number of automatic bug
assignment tools that could have been used. The bug fix time
after the assignment was another year on average.

4. The reasons for long lived bugs are diverse. While problem
complexity, reproducibility, and not understanding the impor-
tance of some of the bugs in advance are the common reasons,
we observed there are many bug-fixes that got delayed without
any specific reason.

5. Unlike previous studies [30], we found that a bug surviving for a
year or more does not necessarily mean that it requires a large
fix. We found that 40% of long-lived bug fixes involved only a
few changes in only one file.

This paper extends our previous ‘‘long lived bugs’’ paper
presented at CSMR-WCRE 2014 [22] in three directions. First, we
perform the same set of experiments on three additional popular
projects: the Linux Kernel, WineHQ, and GDB, which are not only
written in different programming language but are also from dif-
ferent domains than our previous subject systems. Second, we pro-
vide more details for our previous results. Finally, our new results
show that our previous findings hold even for software projects
from different domains and written in different languages. Thus
this paper reports more generalizable results. We believe these
findings will play an important role in developing new approaches
for bug triaging as well as improving the overall bug fixing process.

2. Background

In this section, we provide the necessary background for our
study that includes a brief description of bug tracking systems
and a typical bug life cycle.

2.1. Bug tracking system

Generally project stakeholders maintain a bug database for
tracking all the bugs associated with their projects. There are sev-
eral online bug tracking systems available such as Bugzilla, JIRA,
and Mantis. These systems enable developers/managers to manage
bug databases for their projects. Different repositories may have
different data structures and follow different life cycles of bugs.
The dataset we created and used in our work was extracted from
Bugzilla, a popular online bug tracking system. Therefore, the rest
of the discussion in this paper regarding the bug tracking system is
limited to Bugzilla.

Any person having legitimate access to a project’s bug database
can post a change request through Bugzilla. A change request could
be either a bug or an enhancement. In Bugzilla, however, both bugs
and enhancements are represented similarly and referred as bugs
with an exception that for enhancements severity field is set to
enhancement. Generally bug reporters provide a bug summary,
bug description, the suspected product, and the component name
with its severity.

Developers in a particular project can define their own severity
level. According to Eclipse Bugzilla documentation, the severity
level can be one of the following values, which represent the
degree of potential harm.3

Blocker: These bugs block the development and/or testing
work. There exists no workaround.

Critical: These bugs cause program crashes, loss of data, or
severe memory leaks.

Major: These bugs result in a major loss of function.
Normal: These are regular issues. There is some loss of

functionality under specific circumstances.
Minor: These bugs cause minor loss of functionality, or other

problems where an easy workaround is present.
Trivial: These are generally cosmetic problems such as

misspelled words or misaligned text.
The developers in WineHQ also follow the same severity levels.

However, the GDB community recognizes three levels of severity:
critical, normal, and minor. On the other hand, the Linux commu-
nity has their own severity level: blocking, high, normal, and low.

In addition to providing severity level, reporters also specify the
software version, the platform and operating system where they
encountered the bug so that developers can productively attempt
to reproduce it. Bug reporters also can attach files to the bug report
such as screen shots, and failing test cases. Once a bug is posted, all1 A dataset is imbalanced if the classification classes are not approximately equally

represented.
2 http://www.eclipse.org. 3 http://wiki.eclipse.org/Eclipse/Bug_Tracking.

R.K. Saha et al. / Information and Software Technology 65 (2015) 114–128 115

http://www.eclipse.org
http://wiki.eclipse.org/Eclipse/Bug_Tracking


Download English Version:

https://daneshyari.com/en/article/6948245

Download Persian Version:

https://daneshyari.com/article/6948245

Daneshyari.com

https://daneshyari.com/en/article/6948245
https://daneshyari.com/article/6948245
https://daneshyari.com

