
How Java APIs break – An empirical study

Kamil Jezek a, Jens Dietrich b,⇑, Premek Brada a

a NTIS – New Technologies for the Information Society, European Centre of Excellence, Faculty of Applied Sciences, University of West Bohemia, Univerzitni 8, 306 14 Pilsen,
Czech Republic
b School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand

a r t i c l e i n f o

Article history:
Received 22 June 2014
Received in revised form 12 February 2015
Accepted 26 February 2015
Available online xxxx

Keywords:
Binary compatibility
API evolution
Backward compatibility
Byte-code
Java

a b s t r a c t

Context: It has become common practice to build programs by using libraries. While the benefits of reuse
are well known, an often overlooked risk are system runtime failures due to API changes in libraries that
evolve independently. Traditionally, the consistency between a program and the libraries it uses is
checked at build time when the entire system is compiled and tested. However, the trend towards
partially upgrading systems by redeploying only evolved library versions results in situations where
these crucial verification steps are skipped. For Java programs, partial upgrades create additional interest-
ing problems as the compiler and the virtual machine use different rule sets to enforce contracts between
the providers and the consumers of APIs.
Objective: We have studied the extent of the problem in real world programs. We were interested in two
aspects: the compatibility of API changes as libraries evolve, and the impact this has on programs using
these libraries.
Method: This study is based on the qualitas corpus version 20120401. A data set consisting of 109 Java
open-source programs and 564 program versions was used from this corpus. We have investigated
two types of library dependencies: explicit dependencies to embedded libraries, and dependencies
defined by symbolic references in Maven build files that are resolved at build time. We have used JaCC
for API analysis, this tool is based on the popular ASM byte code analysis library.
Results: We found that for most of the programs we investigated, APIs are unstable as incompatible
changes are common. Surprisingly, there are more compatibility problems in projects that use automated
dependency resolution. However, we found only a few cases where this has an actual impact on other
programs using such an API.
Conclusion: It is concluded that API instability is common and causes problems for programs using these
APIs. Therefore, better tools and methods are needed to safeguard library evolution.

� 2015 Published by Elsevier B.V.

1. Introduction

Re-use has long been seen as an important approach to reduce
the cost and increase the quality of software systems [46,11]. One
of the re-use success stories is the use of libraries (jar files) in Java
programs [23,43]. This is facilitated by a combination of social fac-
tors such as the existence of vibrant open source communities and
commercial product eco-systems, and Java language features like
name spaces (packages), class loading, the jar meta data format
and the availability of interface types. In particular, open source
libraries such as ant, junit and hibernate are widely used in Java
programs.

However, the way libraries are used is changing. It used to be
common practice to import fixed versions of used libraries into a
project and then to build and distribute the project with these
libraries. This meant that the Java compiler and additional tools
like unit testing frameworks were available to check the overall
product for type consistency and functional correctness. Newer
build tools like Maven and Gradle have replaced references to fixed
versions of libraries with a mechanism where a symbolic reference
to a library, often restricted by version ranges, is used and then
resolved against a central repository where libraries are kept.
However, integration still happens at build time, safeguarded by
compilation and automated regression testing.

Driven by the needs for high availability (‘‘24/7 systems’’) and
software product lines, a different way to deploy and integrate sys-
tems has become popular in recent years: to swap individual
libraries and application components at runtime. This feature can

http://dx.doi.org/10.1016/j.infsof.2015.02.014
0950-5849/� 2015 Published by Elsevier B.V.

⇑ Corresponding author.
E-mail addresses: kjezek@kiv.zcu.cz (K. Jezek), j.b.dietrich@massey.ac.nz

(J. Dietrich), brada@kiv.zcu.cz (P. Brada).

Information and Software Technology xxx (2015) xxx–xxx

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

Please cite this article in press as: K. Jezek et al., How Java APIs break – An empirical study, Inform. Softw. Technol. (2015), http://dx.doi.org/10.1016/
j.infsof.2015.02.014

http://dx.doi.org/10.1016/j.infsof.2015.02.014
mailto:kjezek@kiv.zcu.cz
mailto:j.b.dietrich@massey.ac.nz
mailto:brada@kiv.zcu.cz
http://dx.doi.org/10.1016/j.infsof.2015.02.014
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof
http://dx.doi.org/10.1016/j.infsof.2015.02.014
http://dx.doi.org/10.1016/j.infsof.2015.02.014

be used to replace service providers and perform ‘‘hot upgrades’’ of
3rd party libraries. In Java, this is made possible by its ability to
load and unload classes at runtime [30, Chapter 5.3.2],[22,
Chapter 12.7]. The most successful implementation of this idea
to date is OSGi [38], a dynamic component framework that uses
libraries wrapped as components (‘‘bundles’’) with a private class
loader. References between bundles are established – through a
process called wiring – at runtime by the OSGi container. This
approach is now widely used in enterprise software, including
application server technology (Oracle WebLogic, IBM WebSphere)
and development tools (the Eclipse ecosystem).

This has created some interesting challenges for maintaining
application consistency. OSGi allows users to upgrade individual
libraries at runtime by installing their component jar files and
re-loading the respective classes. This mechanism circumvents
the checks done by the compiler and delegates the responsibility
to establish consistency between referencing and referenced code
to the Java Virtual Machine (JVM). In many cases, this does not
really matter as the rules of binary compatibility used by JVM at link
time are similar to the source compatibility rules checked by the
compiler.

However, there are some subtle differences between these sets
of rules that can lead to unexpected runtime behaviour. For
instance, signature changes like specialising method return types
are compatible according to the rules used by the compiler, but
incompatible from the JVMs point of view. Java features like era-
sure, auto-(un) boxing and constant inlining also contribute to this
mismatch. The Java documentation emphasises that ‘‘these prob-
lems cannot be prevented or solved directly because they arise
out of inconsistencies between dynamically loaded packages that
are not under the control of a single system administrator and so
cannot be addressed by current configuration management tech-
niques’’ [35].

A commonly used solution is to add another layer of constraints
to restrict linking. For instance, OSGi-based systems should use
semantic versioning [37]. Its rules for matching the versions of
exported packages of bundles with the version ranges of packages
imported by other bundles can be used to restrict the use of classes
across bundles. This however delegates the responsibility to the
programmer who has to assign the versions to the components,
leading to even more difficult issues [2]: (a) Many code changes
are very subtle (as discussed below) and it cannot be expected that
all programmers understand the effects of seemingly minor API
changes. (b) Programmers have to precisely follow the rules of
the versioning scheme and its semantics (c) Creators and users of
a library must have a common understanding of the versioning
scheme they use. Therefore, any approach that relies on manually
assigned versions is inherently error-prone.

The objective of this paper is to investigate how Java APIs evolve
and to study to what degree compatibility issues occur in practice.
In particular, we are interested in the following research questions:

RQ1 How frequent are API-breaking changes when programs
evolve?

RQ2 How do incompatible changes affect client programs – at
build time during compilation or at link time?

RQ3 How many actual programs are affected by API-breaking
changes?

RQ4 Is there a pattern correlating API-breaking changes and ver-
sioning schemes?

This paper is organised as follows. We review related work in
Section 2, discuss separate types of compatibility in Section 3
and classify the evolution problems we want to investigate in
Section 4. Section 5 describes the methodology used to set up
and execute the experiments. The results of these experiments

are reported in Section 6, followed by a discussion of threats to
validity in Section 7 and the conclusion in Section 8.

2. Related work

The notion of binary compatibility goes back to Forman et al.
[21], who investigated this phenomena in the context of IBM’s
SOM object model. In the context of Java, binary compatibility is
defined in the Java Language Specification [22, Chapter 13].
Drossopoulou et al. [20] have proposed a formal model of binary
compatibility. A comprehensive catalogue of binary compatibility
problems in Java has been provided by des Rivières [13]. The prob-
lems we have investigated here are a subset of this catalogue.

The more general notion of compatibility between collaborating
components has been studied by Beugnard et al. [4]. The authors
pointed out that there are several types of contracts collaborating
software components have to comply with in order to collaborate
successfully. The focus of this study is on syntactic contracts that
can be checked by investigating the type system. Belguidoum
et al. suggested the notions of horizontal and vertical compatibility
[3]. Our work is based on this conceptual framework, as discussed
in Section 3.

There is a significant body of research on how to deal with evo-
lution problems in general, and how to avoid binary incompatibil-
ity in Java programs in particular. For instance, Dmitriev [19] has
proposed to use binary compatibility checks in an optimised build
system that minimises the number of compilations. Barr and
Eisenbach [1] have developed a rule-based tool to compare library
versions in order to detect changes that cause binary compatibility
problems. This is then used in their Distributed Java Version
Control System (DJVCS), a system that helps developers to release
safe upgrades. Binary component adaptation (BCA) [27] is based on
the idea to manipulate class definitions at runtime to overcome
certain binary compatibility problems. Dig et al. [18] and Savga
and Rudolf [12] have proposed a refactoring-based solution to gen-
erate a compatibility layer that ensures binary compatibility when
referenced libraries evolve. Corwin [9] has proposed a modular
framework that adds a higher level API on top of the Java classpath
architecture. This approach is similar to OSGi, a framework that is
now widely used in industry.

To the best of our knowledge there are no comprehensive
empirical studies to assess the extent of the problem caused by
binary evolution issues. Dig and Johnson [17] have conducted a
case study on how APIs evolve on five real world systems (struts,
eclipse, jhotdraw, log4j and a commercial mortgage application).
They found that the majority of API breaking changes were caused
by refactoring, as responsibility is shifted between classes (e.g.,
methods or fields move around) and collaboration protocols are
changed (e.g., renaming or changing method signatures). Their def-
inition of API breaking changes does not distinguish between
source and binary compatibility (‘‘a breaking change is not back-
wards compatible. It would cause an application built with an
older version of the component to fail under a newer version. If
the problem is immediately visible, the application fails to compile
or link’’ [17]).

Mens et al. [34] have studied the evolution of Eclipse from ver-
sion 1.0 to version 3.3. Eclipse is of particular interest to us as it is
based on OSGi and therefore supports dynamic library upgrades
through its bundle/plugin mechanism. The focus of this study
was not on API compatibility but to investigate the applicability
of Lehmann’s laws of software evolution [29]. However, they found
significant changes (i.e., additions, modifications and deletions) in
the respective source code files. It can be assumed that many
of these changes would have caused binary compatibility issues
if the respective bundles had evolved in isolation. Cosette and
Walker have studied API evolution on a set of five Java open source

2 K. Jezek et al. / Information and Software Technology xxx (2015) xxx–xxx

Please cite this article in press as: K. Jezek et al., How Java APIs break – An empirical study, Inform. Softw. Technol. (2015), http://dx.doi.org/10.1016/
j.infsof.2015.02.014

http://dx.doi.org/10.1016/j.infsof.2015.02.014
http://dx.doi.org/10.1016/j.infsof.2015.02.014

Download English Version:

https://daneshyari.com/en/article/6948246

Download Persian Version:

https://daneshyari.com/article/6948246

Daneshyari.com

https://daneshyari.com/en/article/6948246
https://daneshyari.com/article/6948246
https://daneshyari.com

