Information and Software Technology 65 (2015) 147-165

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Performance comparison of query-based techniques for anti-pattern
detection ™

@ CrossMark
Zoltan Ujhelyi **, Gabor Széke "¢, Akos Horvath ?, Norbert Istvan Csiszar”, Laszl6 Vidacs ¢,
Daniel Varré?, Rudolf Ferenc”

2 Department of Measurement and Information Systems, Budapest University of Technology and Economics, H-1117 Magyar tudésok krt. 2., Budapest, Hungary
b Department of Software Engineering, University of Szeged, H-6720 Dugonics tér 13., Szeged, Hungary

“Refactoring 2011 Kft., H-6722 Gutenberg u. 14., Szeged, Hungary

4 MTA-SZTE Research Group on Artificial Intelligence, University of Szeged, H-6720 Tisza Lajos krt. 103., Szeged, Hungary

ARTICLE INFO ABSTRACT

Article history:

Received 23 June 2014

Received in revised form 5 December 2014
Accepted 5 January 2015

Available online 22 January 2015

Context: Program queries play an important role in several software evolution tasks like program com-
prehension, impact analysis, or the automated identification of anti-patterns for complex refactoring
operations. A central artifact of these tasks is the reverse engineered program model built up from the
source code (usually an Abstract Semantic Graph, ASG), which is traditionally post-processed by dedi-
cated, hand-coded queries.

Objective: Our paper investigates the costs and benefits of using the popular industrial Eclipse Modeling
Framework (EMF) as an underlying representation of program models processed by four different gen-
eral-purpose model query techniques based on native Java code, OCL evaluation and (incremental) graph
pattern matching.

Keywords:

Anti-patterns

Refactoring

Performance measurements
Columbus Method: We provide in-depth comparison of these techniques on the source code of 28 Java projects

EMF-IncQuery using anti-pattern queries taken from refactoring operations in different usage profiles.

OCL Results: Our results show that general purpose model queries can outperform hand-coded queries by 2-3
orders of magnitude, with the trade-off of an increased in memory consumption and model load time of
up to an order of magnitude.

Conclusion: The measurement results of usage profiles can be used as guidelines for selecting the appro-
priate query technologies in concrete scenarios.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Program queries play a central role in various software mainte-
nance and evolution tasks. Refactoring, an example of such tasks,
aims at changing the source code of a program without altering
its behavior in order to increase its readability, maintainability,
or to detect and eliminate coding anti-patterns. After identifying
the location of the problem in the source code the refactoring pro-
cess applies predefined operations to fix the issue. In practice, the

* A previous version of this paper has been presented as the best paper at the IEEE
CSMR-WCRE 2014 Software Evolution Week, Antwerp, Belgium, February 3-6,
2014.

* Corresponding authors. Tel.: +36 1 463 3579 (Z. Ujhelyi). Tel.: +36 62 544 143
(L. Vidacs).

E-mail addresses: ujhelyiz@mit.bme.hu (Z. Ujhelyi), kancsuki@inf.u-szeged.hu
(G. Széke), ahorvath@mit.bme.hu (A. Horvath), csiszar.norbert.istvan@stud.
u-szeged.hu (N.I. Csiszar), lac@inf.u-szeged.hu (L. Vidacs), varro@mit.bme.hu (D.
Varro), ferenc@inf.u-szeged.hu (R. Ferenc).

http://dx.doi.org/10.1016/j.infsof.2015.01.003
0950-5849/© 2015 Elsevier B.V. All rights reserved.

identification step is frequently defined by program queries, while
the manipulation step is captured by program transformations.

Advanced refactoring and reverse engineering tools (like the
Columbus framework [1]) first build up an Abstract Semantic
Graph (ASG) as a model from the source code of the program,
which enhances a traditional Abstract Syntax Tree with semantic
edges for method calls, inheritance, type resolution, etc. In order
to handle large programs, the ASG is typically stored in a highly
optimized in-memory representation. Moreover, program queries
are captured as hand-coded programs traversing the ASG driven
by a visitor pattern, which can be a significant development and
maintenance effort.

Models used in model-driven engineering (MDE) are uniformly
stored and manipulated in accordance with a metamodeling
framework, such as the Eclipse Modeling Framework (EMF), which
offers advanced tooling features. Essentially, EMF automatically
generates a Java API, model manipulation code, notifications for
model changes, persistence layer in XMI, and simple editors and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.01.003&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.01.003
mailto:ujhelyiz@mit.bme.hu
mailto:kancsuki@inf.u-szeged.hu
mailto:ahorvath@mit.bme.hu
mailto:csiszar.norbert.istvan@stud.u-szeged.hu
mailto:csiszar.norbert.istvan@stud.u-szeged.hu
mailto:lac@inf.u-szeged.hu
mailto:varro@mit.bme.hu
mailto:ferenc@inf.u-szeged.hu
http://dx.doi.org/10.1016/j.infsof.2015.01.003
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

148 Z. Ujhelyi et al./Information and Software Technology 65 (2015) 147-165

viewers (and many more) from a domain metamodel, which signif-
icantly speeds up the development of EMF-compliant domain-spe-
cific tools.

EMF models are frequently post-processed by advanced model
query techniques based on graph pattern matching exploiting dif-
ferent strategies such as local search [2] or incremental evaluation
[3]. Some of these approaches have demonstrated to scale up for
large models with millions of elements in forward engineering sce-
narios, but up to now, no systematic investigation has been carried
out to show if they are efficiently applicable as a program query
technology. If this is the case, then advanced tooling offered by
the EMF could be directly used by refactoring and program com-
prehension tools without compromise.

The paper contributes a detailed comparison of (1) memory
usage in different ASG representations (dedicated vs. EMF) and
(2) run time performance of different program query techniques.
For the latter, we evaluate five essentially different solutions: (i)
hand-coded visitor queries implemented in native Java code (as
used in Columbus), (ii) the same queries over EMF models, (iii)
the standard OCL language, and generic model queries following
(iv) a local search strategy and (v) incremental model queries, both
using caching techniques from the EMF-INcQuUEry.

We compare the performance characteristics of these query
technologies by using the source code of 28 open-source Java pro-
jects (with a detailed comparison of the largest 14 projects in the
paper) using queries for 8 anti-patterns. Considering typical
usage scenarios, we evaluate different usage profiles for queries
(one-time vs. on-commit vs. on-save query evaluation). As a
consequence, execution time in our measurements includes the
one-time penalty of loading the model itself, and various number
of query executions depending on the actual scenario.

This article is based on a conference paper [4] with extensions
along four directions: two new types of anti-pattern queries were
implemented, which are different from previous ones in their com-
plexity and nature; OCL queries were included in the study as a
fifth approach; the size of subject programs were increased from
1.9M to 10 M lines of code, including three large programs (over
1 M lines of code each) to experiment with the limitations of the
approaches; and the evaluation was extended, among others, with
model and query metrics and with a lessons learned section.

Our main finding is that advanced generic model queries over
EMF models can execute several orders of magnitude faster than
dedicated, hand coded techniques. However, this performance gain
is balanced by an up to 10-15-fold increase in memory usage (in
case of full incremental query evaluation) and an up to 3-4-fold
increase in model load time for EMF based tools and queries,
compared to native Columbus results. Therefore, the best strategy
can be planned in advance, depending on how many times the que-
ries are planned to be evaluated after loading the model from
scratch.

The rest of the paper is structured as follows. Section 2 intro-
duces the queries to be investigated in the paper. Section 3 pro-
vides a technological overview including how to represent
models of Java programs, while Section 4 describes how to capture
queries as visitors, graph patterns and OCL queries. Section 5 pre-
sents the measurement environment including the measured
applications and the measurement process. Our experimental
results and their analysis are detailed in Sections 6 and 7. Section
8 discusses related work to ours, while Section 9 concludes the

paper.

2. Motivation

The results presented in this paper are motivated by an ongoing
three-year refactoring research project involving five industrial

partners, which aims to find an efficient solution for the problem
of software erosion. The starting point of the refactoring process
is the detection of coding anti-patterns to provide developers with
problematic points in the source code. Developers then decide how
to handle the revealed issues. During the project, the first phase
was a manual refactoring phase [5], where developers investigated
the list of reported anti-patterns and manually solved the prob-
lems. Based on these experiences, the real needs of partners were
evaluated, and a refactoring framework was implemented with
support for anti-pattern detection and guided automated refactor-
ing with IDE integration.

In this paper we focus on the detection of coding anti-patterns,
the starting point of the refactoring process. At this step one has to
find patterns of problems, like when two Java strings are compared
using the == operator instead of the equals () method. After iden-
tifying an occurrence of such an anti-pattern, the problematic code
is replaced with a new condition containing a call to the equals ()
method with an appropriate argument.

In the refactoring project, the original plan was to use the
Columbus ASG as the program representation together with its
API to implement queries, since the API provides a program mod-
ification functionality to implement refactorings as well. However,
queries for finding anti-patterns and the actual modifications can
be separated. The presented research builds on this separation to
investigate the performance of various query solutions. Our aim
was to involve generic, model based solutions in the comparison.
Generic solutions offer flexibility and additional features like
change notification support in the EMF and reusable tools and
algorithms, such as supporting for high-level declarative query def-
initions [6,7]. Such features could reduce the effort needed to
define refactorings as well.

In this paper, we investigate two viable options for developing
queries for refactorings: (1) execute queries and transformations
by developing Java code working directly on the ASG; and (2) cre-
ate the EMF representation of the ASG and use EMF models with
generic model based tools. Years ago, we experienced that typical
modeling tools were able to handle only mid-size program graphs
[8]. We now revisit this question and evaluate whether model-
based generic solutions have evolved to compete with hand-coded
Java based solutions. We seek for answers to questions like: What
are the main factors that affect the performance of anti-pattern detec-
tion (like the representation of program models, their handling and
traversing)? What size of programs can be handled (with respect to
memory and runtime) with various solutions? Does incremental query
execution result in better performance?

We note that while we present our study on program queries in
a refactoring context, our results can be used more generally. For
instance, program queries are applied in several scenarios in main-
tenance and evolution from design pattern detection to impact
analysis; furthermore, we think that real-life case studies are
first-class drivers of improvements of model driven tools and
approaches.

In the first round of experiments we selected six types of anti-
patterns based on the feedback of project partners and formalized
them as model queries. The diversity of the problems was among
the most important selection criteria, resulting in queries that var-
ied both in complexity and programming language context ranging
from simple traverse-and-check queries to complex navigation
queries potentially with negative conditions. Here, we briefly and
informally describe the selected refactoring problems and the
related queries used in our case study.

Switch without default. Missing de fault case has to be added to
the switch. Related query: We traverse the whole graph to find
Switch nodes without a default case.

Catch problem. In a catch block there is an instanceof check
for the type of the catch parameter. Instead of the instanceof

Download English Version:

https://daneshyari.com/en/article/6948248

Download Persian Version:

https://daneshyari.com/article/6948248

Daneshyari.com

https://daneshyari.com/en/article/6948248
https://daneshyari.com/article/6948248
https://daneshyari.com

