
A concern-oriented framework for dynamic measurements

Walter Cazzola a,⇑, Alessandro Marchetto b

a Department of Computer Science, Universitá degli Studi di Milano, Italy
b Fondazione Bruno Kessler, Trento, Italy

a r t i c l e i n f o

Article history:
Received 30 July 2013
Received in revised form 19 August 2014
Accepted 20 August 2014
Available online 28 August 2014

Keywords:
Software measurements and metrics
Static and dynamic software artifact
analysis
Software feature and concern

a b s t r a c t

Evolving software programs requires that software developers reason quantitatively about the modularity
impact of several concerns, which are often scattered over the system. To this respect, concern-oriented
software analysis is rising to a dominant position in software development. Hence, measurement tech-
niques play a fundamental role in assessing the concern modularity of a software system. Unfortunately,
existing measurements are still fundamentally module-oriented rather than concern-oriented. Moreover,
the few available concern-oriented metrics are defined in a non-systematic and shared way and mainly
focus on static properties of a concern, even if many properties can only be accurately quantified at run-
time. Hence, novel concern-oriented measurements and, in particular, shared and systematic ways to
define them are still welcome. This paper poses the basis for a unified framework for concern-driven
measurement. The framework provides a basic terminology and criteria for defining novel concern met-
rics. To evaluate the framework feasibility and effectiveness, we have shown how it can be used to adapt
some classic metrics to quantify concerns and in particular to instantiate new dynamic concern metrics
from their static counterparts.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

A concern is any consideration that can affect the implementa-
tion and maintenance of program modules [1]. In particular, a
concern is identified by portions of code not necessarily contiguous
that contribute to implement such a concern; the concern can be
selectively exercised through ad hoc scenarios defined by, e.g., use
cases or test units. A software requirement or functionality, for
instance, is a concern while the dynamic counterpart is the execu-
tion of a requirement or functionality. As an example, the services
provided to the user by a software system that controls an
automated teller machine (ATM) are concerns.

Normally, the software is developed reasoning in term of the
features1 it must provide but the tangled nature of the resulting
application forces the maintainer to reason quantitatively about
their modularity to facilitate its maintenance. With the increasing
relevance of concern-oriented programming, see, for example, the
advent of aspect-oriented programming (AOP) [2] and feature-
oriented programming (FOP) [3], there is an urge to revise existing
metrics (as done by [4]) and to develop new ones supporting concern

quantification against software variability. For instance, some stud-
ies [5,6] suggested that an increment to software modularity might
correspond to: (i) an increment of undesirable couplings involving
the realization of two or more concerns; and (ii) a decrement of
the cohesion among the elements realizing a concern. This kind of
concern-specific design anomalies are key factors to decrease software
maintainability.

However, to provide an accurate characterization of how a con-
cern affects a program is not a trivial task [4]. Many concerns are
often tangled and scattered across a number of modules and,
therefore, there is no direct traceability between a concern and
the module boundaries [1]. The mapping between concern and
code modules—i.e., ‘‘where the concern is implemented in the
code’’—is not always well-documented and well-preserved during
the system design, implementation and maintenance. In such
cases, the mapping between concerns and code modules can be
inferred by static code analysis (to the static extent) and completed
by dynamically exercising the concern, e.g., via test units (to the
dynamic extent) [7]. As a result, concern-specific properties cannot
be detected by applying conventional module-oriented metrics
and proper variants of such metrics have been investigated in the
literature, such as [4,8,9].

By analyzing the existing literature in the field of concern-
oriented metrics, however, we observed two main limitations:

http://dx.doi.org/10.1016/j.infsof.2014.08.006
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: cazzola@di.unimi.it (W. Cazzola), alex.marchetto@gmail.com

(A. Marchetto).
1 In the rest of the paper, feature and concern will be used as synonyms.

Information and Software Technology 57 (2015) 32–51

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.08.006&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.08.006
mailto:cazzola@di.unimi.it
mailto:alex.marchetto@gmail.com
http://dx.doi.org/10.1016/j.infsof.2014.08.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


1. Existing metrics are not systematically defined, that is, there
is a lack of shared frameworks or approaches that can sup-
port the systematic definition of concern-oriented metrics.
In fact, to the best of our knowledge, there exists only one
measurement framework (i.e., the one described in [9])
devoted to design and describe concern-oriented metrics;
all the others frameworks available in the literature—such
as [10,11]—only support module-oriented metrics, thus
they cannot be reused as-is to define new concern-oriented
metrics. Consequently, designers of measurement tools can-
not rely on formal, systematic and shared terminology, set
of notions and criteria to: define and describe concern met-
rics and systematically validate and compare them, e.g.,
with the existing ones. This leads to ambiguous and overlap-
ping metric definition that hampers the adoption of concern
metrics in academic and industry settings and the execution
of empirical studies using these metrics in general.

2. Existing concern-oriented metrics are mainly static, i.e., they
quantify statically-computable properties of a concern, as we
have identified in a recent systematic study [9]. However, as
happens in the case of software modules [10,11], some rele-
vant properties of a concern can only be precisely discovered
though the concern execution [4], such as dynamic coupling
or cohesion. Static and dynamic metrics are hence comple-
mentary also at concern-level as well as at module-level. In
fact, static metrics are conservative and can lose precision
since they are based on static analysis of software artifacts
(e.g., source code), while dynamic metrics are strongly tied
to specific software executions, thus they can be more precise
than the static ones but they can suffer of under-
approximated results, i.e., the part of the system not executed
is not considered in the metric computation.

This paper presents a contribution in this field by providing a
concern-driven framework for defining and describing both static
and dynamic metrics, at both module and concern levels. In partic-
ular, the presented framework extends and complements our mea-
surement framework presented in [9] by capturing run-time
properties that can be quantified for a concern and how they can
be obtained. The framework is composed of a group of terms,
notions and criteria for defining and comparing dynamic concern
metrics beyond those for defining and comparing static concern
metrics.

We evaluated the presented framework’s feasibility and effec-
tiveness in two ways. First, we conducted an experiment (Section
6) where some subjects (students) have used the framework to
instantiate some dynamic concern-oriented metrics from their sta-
tic or module-oriented counterparts; the goal of this experiment
was to answer the research question: (RQ1): ‘‘Can the framework
be used to describe several concern-oriented metrics using a common
and precise terminology and set of concepts?’’. Second, we reported
on a case study (Section 7) where we used some dynamic and sta-
tic concern oriented metric to measure a pool of open source appli-
cations; the case study has been carried out with the goal of
answering to the research question: (RQ2) ‘‘Are the dynamic con-
cern-oriented metrics useful to predict the concern bug-proneness?’’.
This case study aimed at showing utility and effectiveness of such
dynamic concern metrics for bug-proneness estimation.

The rest of the paper is organized as follows. In Section 2 we
present a survey of existing maintainability measurements and
describe their adaptation to quantify dynamic properties. Further-
more, we stress the relevance of dynamic measurement by exam-
ples. In Section 3 we analyze the specific characteristics of
measuring concerns dynamically, that are in particular, concern
mapping and triggering, as well as a tool supporting the identifica-
tion of a concern and its components at runtime. We introduce the

framework in Section 4 and the criteria composing it in Section 5.
Section 6 provides an experimental evaluation of the proposed
framework by metrics instantiation while Section 7 reports a study
we conducted about the usage of dynamic measurements instanti-
ated at concern-level through the presented framework. Finally,
Section 8 summarizes the state-of-the-art about metric frame-
works, and in Section 9 we draw our concluding remarks.

2. Towards dynamic concern measurement

To support dynamic concern-driven metrics definition and
measurement we had to understand which properties and
notions characterize a concern at run-time and whether it is
worth measuring. Since the literature on dynamic concern mea-
surement is scarce2 we have looked at the literature about metrics
(both at module and concern level) and dynamic properties of soft-
ware systems for identifying such properties and characteristics.
Therefore, to have a wide and comprehensive understanding of
the concern’s properties, we studied and adapted some existing
static concern metrics and some well-accepted module-oriented
metrics to quantify dynamic concern properties. Such an approach
permitted to cover a larger amount of possible measurements and
relevant properties that might otherwise be overlooked. Out of
these findings, then, we defined a set of framework criteria that
capture such properties and that make the framework complete
and effective enough to describe existing and new dynamic
concern-oriented metrics.

In the rest of this section we present the result of our investiga-
tion, in particular we show how the considered metrics have been
adapted to the dynamic and/or concern-oriented context. We have
classified the considered metrics according to their original charac-
teristics as follows:

� Dynamic module metrics. These are dynamic module-
driven metrics originally defined for object-oriented
systems. They were adapted or extended to be applied to
concerns as well.

� Static concern metrics. These are static metrics originally
defined for concerns. They were adapted or extended to be
dynamically applied.

� Dynamic concern metrics. These are dynamic metrics
already defined for concerns that do not require any
adaptation.

Table 1 summarizes the result of the literature review we con-
ducted. The table shows the considered suite of metrics and it
reports for each metric the original definition (column ‘‘Original
Definition’’) present in the literature and the definition obtained
from our adaptation (column ‘‘Modified Definition’’). To complete
the picture, in Table 2 we report the definition of those metrics that
are already defined as dynamic and concern-oriented and therefore
that do not need any adaptation in order to be considered.

The adaptation process is quite straightforward and relies on
the adoption of the concept of concern execution that corresponds
to the execution of the elements composing the concern that can
be prodded by, for example, an ad hoc use case or test unit. If the
considered metric is dynamic but not concern-oriented we
mapped the subject and/or the target of the measurement to the
concerns; whereas if the metric is already concern-oriented but
not dynamic we have exclusively considered the events that occur
during the execution. For instance, in Concern Diffusion over Opera-
tions (CDO) we look for components that participate in the concern

2 To the best of our knowledge, [4] is the most relevant piece of work in this field by
introducing disparity, concentration and dedication metrics.

W. Cazzola, A. Marchetto / Information and Software Technology 57 (2015) 32–51 33



Download	English	Version:

https://daneshyari.com/en/article/6948252

Download	Persian	Version:

https://daneshyari.com/article/6948252

Daneshyari.com

https://daneshyari.com/en/article/6948252
https://daneshyari.com/article/6948252
https://daneshyari.com/

