Information and Software Technology 57 (2015) 66-76

journal homepage: www.elsevier.com/locate/infsof

Information and Software Technology

Contents lists available at ScienceDirect

Exception handling analysis and transformation using fault injection:
Study of resilience against unanticipated exceptions

@ CrossMark

Benoit Cornu *, Lionel Seinturier ', Martin Monperrus 2

University of Lille & Inria, Laboratoire d’Informatique Fondamentale de Lille (LIFL), Campus Scientifique, 59655 Villeneuve d’Ascq Cedex, France

ARTICLE INFO

Article history:

Received 14 March 2014

Received in revised form 14 August 2014
Accepted 15 August 2014

Available online 16 September 2014

Keywords:

Dynamic verification
Contract

Exception handling
Fault injection

ABSTRACT

Context: In software, there are the error cases that are anticipated at specification and design time, those
encountered at development and testing time, and those that were never anticipated before happening in
production. Is it possible to learn from the anticipated errors during design to analyze and improve the
resilience against the unanticipated ones in production?
Objective: In this paper, we aim at analyzing and improving how software handles unanticipated excep-
tions. The first objective is to set up contracts about exception handling and a way to assess them automat-
ically. The second one is to improve the resilience capabilities of software by transforming the source code.
Method: We devise an algorithm, called short-circuit testing, which injects exceptions during test suite
execution so as to simulate unanticipated errors. It is a kind of fault-injection techniques dedicated to
exception-handling. This algorithm collects data that is used for verifying two formal contracts that cap-
ture two resilience properties w.r.t. exceptions: the source-independence and pure-resilience contracts.
Then we propose a code modification technique, called “catch-stretching” which allows error-recovery
code (of the form of catch blocks) to be more resilient.
Results: Our evaluation is performed on 9 open-source software applications and consists in analyzing 241
catch blocks executed during test suite execution. Our results show that 101/214 of them (47%) expose
resilience properties as defined by our exception contracts and that 84/214 of them (39%) can be trans-
formed to be more resilient.
Conclusion: Our work shows that it is possible to reason on software resilience by injecting exceptions
during test suite execution. The collected information allows us to apply one source code transformation
that improves the resilience against unanticipated exceptions. This works best if the test suite exercises
the exceptional programming language constructs in many different scenarios.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

paper, we aim at reasoning on the ability of software to correctly
handle unanticipated errors.

At Fukushima'’s power plant, the anticipated maximum tsunami
height was 5.6 m [1]. On March 11, 2011, the highest waves struck
at 15 m. In software, there are the errors anticipated at specifica-
tion and design time, those encountered at development and test-
ing time, and those that happen in the production mode yet never
anticipated, as Fukushima’s tsunami.

Resilience is “the persistence of service delivery that can justifiably
be trusted, when facing changes” [14]. “Changes may refer to unex-
pected failures, attacks or accidents (e.g., disasters)” [25]. In this

* Corresponding author. Tel.: +33 3 59 35 87 62.
E-mail addresses: benoit.cornu@inria.fr (B. Cornu), lionel.seinturier@univ-lille1.
fr (L. Seinturier), martin.monperrus@univ-lille1.fr (M. Monperrus).
T Tel.: +33 3 59 35 87 76.
2 Tel.: +33 3 59 35 87 61.

http://dx.doi.org/10.1016/j.infsof.2014.08.004
0950-5849/© 2014 Elsevier B.V. All rights reserved.

We focus on the resilience against exceptions [11]. Exceptions
are programming language constructs for handling errors. Excep-
tions are implemented in most mainstream programming lan-
guages [12] and widely used in practice [6]. In large and complex
software, it is impossible to predict all error cases that will happen
in the field (real-world environments are too unpredictable and
usages too diverse). In this paper, the resilience against exceptions
is the ability to correctly handle exceptions that were never fore-
seen at specification time neither encountered during develop-
ment or testing. This is our deep motivation: helping developers
to understand and improve the resilience of their applications
against unanticipated exceptions.

The key difficulty behind this research agenda is the notion of
“unanticipated”: how to reason on what one does not know or
on what one has never seen? To answer this question, we start


http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.08.004&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.08.004
mailto:benoit.cornu@inria.fr
mailto:lionel.seinturier@univ-lille1.fr
mailto:lionel.seinturier@univ-lille1.fr
mailto:martin.monperrus@univ-lille1.fr
http://dx.doi.org/10.1016/j.infsof.2014.08.004
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

B. Cornu et al./Information and Software Technology 57 (2015) 66-76 67

by proposing one definition of “anticipated exception”. First, we
consider well-tested software (i.e. those with a good automated
test suite). Second, we define an “anticipated exception” as an
exception that is triggered during the test suite execution. To this
extent, those exceptions and the associated behavior (error detec-
tion, error-recovery) are specified by the test suite (which is a prag-
matic approximation of an idealized specification [24]).

Then, we simulate “unanticipated exceptions” by injecting
exceptions at appropriate places during test suite execution. This
fault injection technique, called “short-circuit testing”, consists of
throwing exceptions at the beginning of try-blocks, simulating
the worst error case when the complete try-block is skipped due
to the occurrence of a severe error. Despite the injected exceptions,
a large number of test cases still passes. When this happens, it
means that the software under study is able to resist to certain
unanticipated exceptions. It can be said “resilient” according to
our definition of “Resilience”.

The art of injecting exceptions during test suite execution con-
sist of (1) selecting the right places to inject exceptions (2) choos-
ing the right point in time for injection and (3) throwing the
appropriate kind of exceptions. With an intuitive, then formal rea-
soning on the nature of resilience and exceptions, we tackle those
three challenges and define two contracts on the programming
language construct “try-catch” that capture two facets of software
resilience against unanticipated exceptions. The satisfaction or vio-
lation of those contracts is assessed using the execution data col-
lected during short-circuit testing.

Finally, we use the knowledge on resilience obtained with
short-circuit testing to replace the caught type of a catch block
by one of its super-type. This source code transformation, called
“catch stretching” is considered correct if the test suite continues
to pass. By enabling catch blocks to correctly handle more types
of exception (w.r.t. the specification), the code is more capable of
handling unanticipated exceptions.

Our approach helps developers to be aware of what part
of their code is resilient, and to automatically recommend
modifications of catch blocks that improve the software
resilience.

Our technique is novel. There are techniques to provide infor-
mation about the test suite with respect to exceptions or to
improve the test suite [5,8,10,26]. Our contribution is on analyzing
and improving the applicative code itself (the test suite is just a
means). Other papers make static analyses of exception handling
[22,23]. Our contribution is a dynamic technique which uses a
new kind of fault injection.

We evaluate our approach by analyzing the resilience of 9 well-
tested open-source applications written in Java. In this dataset, we
analyze the resilience capabilities of 241 try-catch blocks and show
that 92 of them satisfy at least one resilience contract and 24 try-
catch blocks violate a resilience property.

To sum up, our contributions are:

e A definition and formalization of two contracts on try-catch
blocks.

e An algorithm and four predicates to verify whether a try-catch
satisfies those contracts.

e A source code transformation to improve the resilience against
exceptions.

e An empirical evaluation on 9 open sources applications with
one test suite each showing that there exists resilient try-catch
blocks in practice.

2. Background

In our work, we use the distinction of Avizienis et al. [2]
between faults, errors and failures. However, we also consider
the common usage, which consists of fault-injection and error-
handling whereas it might sometimes be more appropriate to say
error-injection or fault-handling. In our paper, for sake of under-
standability, we prefer the common usage and use well-known
expressions such as fault-injection or fault model.

2.1. Background on exceptions

Exceptions are programming language constructs for handling
errors [11]. Exceptions can be thrown and caught. When one
throws an exception, this means that something has gone wrong
and this cancels the nominal behavior of the application: the pro-
gram will not follow the normal control-flow and will not execute
the next instructions. Instead, the program will “jump” to the near-
est matching catch block. In the worst case, there is no matching
catch block in the stack and the exception reaches the main entry
point of the program and consequently, stops its execution (i.e.
crashes the program). When an exception is thrown then caught,
it is equivalent to a direct jump from the throw location to the
catch location: in the execution state, only the call stack has chan-
ged, but not the heap.? For a practical presentation of exceptions in
mainstream programming languages, we refer to any introductory
textbook, e.g. [20]. Avizienis et al. [2] do not mention exceptions.
We consider exceptions as errors and we use the term error in the
paper as much as possible.

2.2. Definition of resilience

We embrace the definition of “software resilience” by Laprie as
interpreted by Trivedi et al.:

Definition. Resilience is “the persistence of service delivery that can
justifiably be trusted, when facing changes” [14]. “Changes may refer
to unexpected failures, attacks or accidents (e.g., disasters)” [25].

Along with Trivedi et al., we interpret the idea of “unexpected”
events with the notion of “design envelope” [25], a known term in
safety critical system design. The design envelope defines all the
anticipated states of a software system. It defines the boundary
between anticipated and unanticipated runtime states. The design
envelope contains both correct states and incorrect states, the lat-
ter resulting from the anticipation of misusages and attacks.
According to that, “resilience deals with conditions that are outside
the design envelope” [25]. Along this line, we consider that the
main difference between software resilience and software robust-
ness is that software robustness deals with anticipated kinds of
errors (i.e. inside the “design envelope”).

In this paper, we focus on the resilience in the context of soft-
ware that uses exceptions. We interpret and refine this general def-
inition in the context of mainstream exception handling.

Definition. Resilience against exceptions is the software system’s

ability to reenter a correct state when an unanticipated exception
occurs.

2.3. Specifications and test suites

A test suite is a collection of test cases where each test case
contains a set of assertions [4]. The assertions specify what the

3 The heap may change if the programming language contains a finalization
mechanism (e.g. in Module-2+ [19]).



Download English Version:

https://daneshyari.com/en/article/6948255

Download Persian Version:

https://daneshyari.com/article/6948255

Daneshyari.com


https://daneshyari.com/en/article/6948255
https://daneshyari.com/article/6948255
https://daneshyari.com

