
Testing robot controllers using constraint programming
and continuous integration

Morten Mossige a,b,c,⇑, Arnaud Gotlieb b,1, Hein Meling c,2

a ABB Robotics, 4349 Bryne, Norway
b Simula Research Laboratory, Lysaker, Norway
c University of Stavanger, 4036 Stavanger, Norway

a r t i c l e i n f o

Article history:
Received 24 March 2014
Received in revised form 19 September 2014
Accepted 19 September 2014
Available online 2 October 2014

Keywords:
Constraint programming
Continuous integration
Robotized painting
Software testing
Distributed real time systems
Agile development

a b s t r a c t

Context: Testing complex industrial robots (CIRs) requires testing several interacting control systems.
This is challenging, especially for robots performing process-intensive tasks such as painting or gluing,
since their dedicated process control systems can be loosely coupled with the robot’s motion control.
Objective: Current practices for validating CIRs involve manual test case design and execution. To reduce
testing costs and improve quality assurance, a trend is to automate the generation of test cases. Our work
aims to define a cost-effective automated testing technique to validate CIR control systems in an indus-
trial context.
Method: This paper reports on a methodology, developed at ABB Robotics in collaboration with SIMULA,
for the fully automated testing of CIRs control systems. Our approach draws on continuous integration
principles and well-established constraint-based testing techniques. It is based on a novel constraint-
based model for automatically generating test sequences where test sequences are both generated and
executed as part of a continuous integration process.
Results: By performing a detailed analysis of experimental results over a simplified version of our con-
straint model, we determine the most appropriate parameterization of the operational version of the con-
straint model. This version is now being deployed at ABB Robotics’s CIR testing facilities and used on a
permanent basis. This paper presents the empirical results obtained when automatically generating test
sequences for CIRs at ABB Robotics. In a real industrial setting, the results show that our methodology is
not only able to detect reintroduced known faults, but also to spot completely new faults.
Conclusion: Our empirical evaluation shows that constraint-based testing is appropriate for automati-
cally generating test sequences for CIRs and can be faithfully deployed in an industrial context.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

A complex industrial robot (CIR) is defined as a classical indus-
trial robot with an additional control system attached to perform a
given process. This additional control system is typical responsible
for controlling the process, which is typically painting, gluing,
welding, and so forth.

Developing reliable software for CIRs is a complex task, because
typical CIRs are comprised of numerous components, including
control computers, microprocessors, field-programmable gate

arrays, and sensor devices. These components usually interact
through a range of different interconnection technologies, for
example, Ethernet and dual port RAM, depending on delay and
latency requirements on the communication. As the complexity
of robot control systems continues to grow, the development and
validation of software for CIRs is becoming increasingly difficult.

The problem is even worse for robots performing process-inten-
sive tasks such as painting, gluing, or sealing, since their dedicated
process control systems can be loosely coupled with the motion
control system. In particular, a key feature of robotized painting
is the ability to precisely activate the process equipment along a
robot’s programmed path. However, many of the processes
involved in robotized painting are relatively slow compared to
the process of moving the mechanical robot. Consequently,
advanced computation-based techniques have been set up to take
advantage of knowledge of the slower physical processes to

http://dx.doi.org/10.1016/j.infsof.2014.09.009
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: University of Stavanger, 4036 Stavanger, Norway.
Tel.: +47 514 89 247.

E-mail addresses: morten.mossige@uis.no (M. Mossige), arnaud@simula.no
(A. Gotlieb), hein.meling@uis.no (H. Meling).

1 Tel.: +47 406 26 077.
2 Tel.: +47 518 32 080.

Information and Software Technology 57 (2015) 169–185

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.09.009&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.09.009
mailto:morten.mossige@uis.no
mailto:arnaud@simula.no        
mailto:hein.meling@uis.no
http://dx.doi.org/10.1016/j.infsof.2014.09.009
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


compensate for these latencies. Validation of such a paint control
system, called an Integrated Painting System (IPS), is therefore
challenging. Current testing practices to reduce the number of soft-
ware faults apply techniques such as the manual design of unit and
integration testing, where both the test inputs and expected output
are defined by validation engineers. Testing the IPS requires access
to the physical layer to activate many of the painting robot’s fea-
tures. Much of the testing is based on running the full-scale system
with a moving robot and measuring IPS outputs with instruments
such as an oscilloscope. This results in long round-trip times and
little automation. In addition, many of the tests produced for one
configuration of the IPS cannot easily be reused to test another
configuration, since manual test configuration is required. These
techniques are labor intensive and error prone. Consequently, soft-
ware faults may still be detected late in the IPS design process,
often close to release date, leading to increased validation costs.

In this paper, we report on a methodology to fully automate the
testing of ABB’s CIR control systems. The work builds on initial
ideas sketched in a poster presentation [1]. Our approach draws
on continuous integration principles and well-established con-
straint-based testing techniques. It is based on an original con-
straint-based model for automatically generating test sequences
that are both generated and executed as part of a continuous inte-
gration process. By performing a detailed analysis of experimental
results over a simplified version of our constraint model, we deter-
mine the most appropriate parameterization of the operational
version of the constraint model. This version is now deployed at
ABB Robotics’s CIR testing facilities and used on a permanent basis.
This paper presents the empirical results obtained when automat-
ically generating test sequences for CIRs at ABB Robotics. In a real
industrial setting, the results show that our methodology is not
only able to detect reintroduced known faults, but also to spot
completely new faults. Our empirical evaluation shows that con-
straint-based testing is appropriate to automatically generate test
sequences for CIRs and can be faithfully deployed in an industrial
context.

1.1. Contributions

The contributions of the paper can be summarized as follows:

1. Our testing methodology introduces a new constraint-based
mathematical model focusing on IPS timing aspects. The con-
straints are used to describe both normal behaviors of the IPS,
as well as abnormal behaviors, so that it is possible to target
error states when generating test cases. The model is generic
and expressed using simple mathematical notions, which
makes it reusable in other contexts.

2. A full-scale implementation of the model is presented with con-
straint programming tools [2]. The paper presents how the
model is integrated in a live industrial setting to test the IPS.
To the best of our knowledge, this is the first time a constraint
model and its solving processes are used in a continuous inte-
gration environment to test complex control systems.

3. An empirical evaluation is conducted to analyze the model’s
deployment. During this evaluation, reinserted old, historical
faults are found by this new approach, as well as new faults.
Comparing this constraint-based approach with current IPS
testing practices reveals that the time from a source code
change to the time that a relevant test is executed is dramati-
cally reduced.

1.2. Organization

We start by providing background information and presenting
related work in Section 2. In Section 3 we introduce robotized

painting. We describe some of the design choices made when
developing ABB’s paint control system and how these affect test-
ing of the system. We present how the IPS is currently tested in
Section 4. We describe the paint control systems’ mathematical
properties in Section 5 and, based on these properties, we present
the constraints used as a basis for generating a model that can be
used for test case generation in Section 6. In Section 7, we
describe how the model is implemented and how it is integrated
with a continuous integration system. We then present the
results this new test strategy in Section 8. We present a thor-
oughly experimental evaluation of the model recommendations
of how to use the model. In Section 9, we suggest ideas for
improvement and further work.

2. Background and related work

The methodology proposed in this paper is tightly coupled with
continuous integration and model-based testing (MBT). This sec-
tion recalls the basics of continuous integration and gives a brief
overview of the most recent advances in the field by looking at
how continuous integration influences verification and validation
activities. This section also reviews usage of MBT, with a particular
focus on constraint programming in software testing.

2.1. Continuous integration

Continuous integration [3] is a software engineering practice
aimed at uncovering software errors at an early stage of software
development, to avoid problems during integration testing. Even
if there is no general consensus of what continuous integration is
exactly, a typical continuous integration infrastructure includes
source control repository tools, automated build, build servers,3

and test servers. Fitzgerald and Stol [4] describe continuous integra-
tion as ‘‘a process which is typically automatically triggered and
comprises inter-connected steps such as compiling code, running
unit and acceptance tests, validating code coverage, checking com-
pliance with coding standards, and building deployment packages.’’
There is therefore a common understanding that the time from a
continuous integration cycle being triggered to a developer receiving
feedback should be as short as possible [5,6]. Therefore, one of the
key ideas behind continuous integration is to build, integrate, and
test the software as frequently as possible. Developers working
under continuous integration are encouraged to submit small source
code changes to the source code repository instead of waiting and
occasionally submitting larger sets of changes.

If we consider test execution part of a continuous integration
cycle, various testing activities could, in principle, be included.
For example, automatic test case generation, test suite minimiza-
tion, or prioritization [7–11] could be included to reduce the time
needed to execute a test suite without reducing the quality of the
overall test process. Interestingly, Hill et al. [12] report on the
inclusion of system execution modeling tools to test distributed
real-time systems as part of continuous integration. However, to
the best our of knowledge, very few results evaluate the impact
of including more testing activities in continuous integration. Our
work, incorporating systematic automated test case generation
methodology in continuous integration, is a first step toward more
automation in the software validation of complex software control
systems.

3 A build server is a machine that fetches source code from the source control
repository and performs building, testing, integration, and so forth. All steps are
carried out completely automatically and typically triggered by a source code commit
or a timer.

170 M. Mossige et al. / Information and Software Technology 57 (2015) 169–185



Download English Version:

https://daneshyari.com/en/article/6948264

Download Persian Version:

https://daneshyari.com/article/6948264

Daneshyari.com

https://daneshyari.com/en/article/6948264
https://daneshyari.com/article/6948264
https://daneshyari.com

