
An empirical analysis of package-modularization metrics: Implications
for software fault-proneness

Yangyang Zhao a,b, Yibiao Yang a,b, Hongmin Lu a,b, Yuming Zhou a,b,⇑, Qinbao Song c, Baowen Xu a,b

a State Key Laboratory for Novel Software Technology, Nanjing University, China
b Department of Computer Science and Technology, Nanjing University, China
c Department of Computer Science and Technology, Xi’an Jiaotong University, China

a r t i c l e i n f o

Article history:
Received 29 May 2014
Received in revised form 12 September 2014
Accepted 15 September 2014

Keywords:
Modularization
Metrics
Package
Fault-proneness
Prediction
Object-oriented

a b s t r a c t

Context: In a large object-oriented software system, packages play the role of modules which group
related classes together to provide well-identified services to the rest of the system. In this context, it
is widely believed that modularization has a large influence on the quality of packages. Recently, Sarkar,
Kak, and Rama proposed a set of new metrics to characterize the modularization quality of packages from
important perspectives such as inter-module call traffic, state access violations, fragile base-class design,
programming to interface, and plugin pollution. These package-modularization metrics are quite differ-
ent from traditional package-level metrics, which measure software quality mainly from size, extensibil-
ity, responsibility, independence, abstractness, and instability perspectives. As such, it is expected that
these package-modularization metrics should be useful predictors for fault-proneness. However, little
is currently known on their actual usefulness for fault-proneness prediction, especially compared with
traditional package-level metrics.
Objective: In this paper, we examine the role of these new package-modularization metrics for determin-
ing software fault-proneness in object-oriented systems.
Method: We first use principal component analysis to analyze whether these new package-modulariza-
tion metrics capture additional information compared with traditional package-level metrics. Second, we
employ univariate prediction models to investigate how these new package-modularization metrics are
related to fault-proneness. Finally, we build multivariate prediction models to examine the ability of
these new package-modularization metrics for predicting fault-prone packages.
Results: Our results, based on six open-source object-oriented software systems, show that: (1) these
new package-modularization metrics provide new and complementary views of software complexity
compared with traditional package-level metrics; (2) most of these new package-modularization metrics
have a significant association with fault-proneness in an expected direction; and (3) these new package-
modularization metrics can substantially improve the effectiveness of fault-proneness prediction when
used with traditional package-level metrics together.
Conclusions: The package-modularization metrics proposed by Sarkar, Kak, and Rama are useful for prac-
titioners to develop quality software systems.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The last decades have seen a considerable increase of large-
scale object-oriented software systems consisting of thousands of
classes. In such a system, classes are inappropriate to be consid-
ered as units of software modularization [1]. Instead, it is common
to use packages to group related classes together to provide

well-identified services to the rest of the system [1]. In other
words, packages indeed play the roles of modules, which enable
developers to manage the complexity of a large-scale software sys-
tem. The importance of packages has been well recognized in
object-oriented software development. If well designed, packages
will significantly reduce the complexity of a system and thus make
it easier to understand, maintain, and extend. However, as soft-
ware evolves, even for a well-modularized system, the quality of
its software packages may gradually degrade over time with code
changes. For example, classes may be placed in unsuitable

http://dx.doi.org/10.1016/j.infsof.2014.09.006
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: State Key Laboratory for Novel Software Technology,
Nanjing University, China.

Information and Software Technology 57 (2015) 186–203

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.09.006&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.09.006
http://dx.doi.org/10.1016/j.infsof.2014.09.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


packages, which makes software maintenance increasingly
difficult and expensive [2]. Consequently, in order to reduce the
cost of quality assurance, it is necessary to assess the quality of
package organization. If we are able to measure the modularization
quality of packages in a quantitative way, we can identify poten-
tially problematic packages and take remedial measures to
enhance their quality in time. This is especially important for
legacy large-scale object-oriented software systems.

Despite the importance of package measurement, little effort
has been devoted to develop metrics for measuring the modular-
ization quality of packages and to empirically evaluate their useful-
ness for software development in practice. In [3], Martin proposed
a metrics suite, including afferent couplings, efferent couplings,
abstractness, and instability, to quantify the modularization qual-
ity of packages in terms of their extensibility, reusability, and
maintainability. In [4], Elish et al. found that most metrics in Mar-
tin’s suite were significantly related to the number of pre-release/
post-release faults in packages. Recently, Sarkar et al. proposed a
new metrics suite to characterize the modularization quality of a
package [5]. Compared with previous work, Sarkar et al.’s suite
characterizes the quality of modularization from more comprehen-
sive perspectives such as inter-module call traffic, state access vio-
lations, fragile base-class design, programming to interface, and
plugin pollution. These package-modularization metrics are quite
different from traditional package-level metrics, which measure
software quality mainly from the perspectives of size, extensibility,
responsibility, independence, abstractness, and instability. In their
study, Sarkar et al. argued that the proposed suite was able to
reveal the real quality of modularization by manually inspecting
six large object-oriented systems. Furthermore, they reported that
the proposed suite was able to reveal the quality degradation in a
system caused by novice programmers via a simulation experi-
ment. However, little is currently known on the implications of
these package-modularization metrics for software fault-prone-
ness, especially compared with traditional package-level metrics.

In this paper, we aim to empirically examine the usefulness of
Sarkar et al.’s package-modularization metrics in predicting the
fault-proneness of packages in object-oriented software systems.
In this context, if at least one post-release fault is detected in a
package, the package is considered to be faulty and otherwise
not-faulty. We first use principal component analysis to analyze
whether Sarkar et al.’s package-modularization metrics capture
additional information compared with traditional package-level
metrics, including source code size and Martin’s metrics suite. Sec-
ond, we employ univariate prediction models to investigate how
Sarkar et al.’s package-modularization metrics are related to pack-
age fault-proneness. Finally, we build multivariate prediction mod-
els to examine the ability of Sarkar et al.’s package-modularization
metrics for predicting fault-proneness. Based on six object-ori-
ented systems, our results show that: (1) package-modularization
metrics provide new and complementary views of software com-
plexity compared with traditional package-level metrics; (2) most
package-modularization metrics have a significant association
with package fault-proneness in an expected direction; and (3)
package-modularization metrics can substantially improve the
effectiveness of package fault-proneness prediction when used
with traditional package-level metrics together. These results pro-
vide valuable data in an important area where there is limited
experimental data available. These experimental results are criti-
cally important to help both researchers and practitioners under-
stand whether package-modularization metrics are indeed of
practical value for fault-proneness prediction. We believe that they
can guide the development of better fault-proneness prediction
models in practice.

The remainder of the paper is structured as follows. Section 2
describes package-modularization metrics and traditional

package-level complexity metrics and formulates the research
questions investigated in this study. Section 3 presents the model-
ing technique for fault-proneness prediction models and the data
analysis methods for the three research questions under
investigation. Section 4 introduces the data source and reports
the distribution of package-modularization metrics. Section 5
provides in detail the experimental results. Section 6 discusses
our findings. Section 7 analyzes the threats to the validity of our
study. Section 8 gives the conclusions and outlines the directions
for future work.

2. The investigated metrics and research questions

In this section, we first describe the definitions of Sarkar et al.’s
software modularization metrics and traditional package-level
complexity metrics. Then, we formulate the research questions
relating software modularization metrics to traditional package-
level complexity metrics and package fault-proneness.

2.1. Software modularization metrics

In a large object-oriented software system, it is common to
organize classes into different packages in order to manage the
complexity of the system. In this context, packages are actually
used as the units for software modularization and hence their
quality has a large influence on the quality of the system.

Recently, Sarkar et al. proposed a set of metrics to measure the
quality of software modularization (as shown in Table 1). Overall,
these metrics can be classified into to three categories. The first
category is to measure the quality of modules (i.e. packages in
our study) with respect to inter-module coupling created by
method invocation. Ideally, each module should use its APIs (Appli-
cation Programming Interfaces1) to provide well identified services
to other modules and these modules should access each other’s
resources only through the published APIs. In particular, if a module
has multiple S-APIs, each S-API should be cohesive from the perspec-
tive of a similarity of purpose and should be maximally segregated
from the other S-APIs from the perspective of usage [5]. However,
in practice, not all software systems strictly follow this modulariza-
tion principle. Therefore, Sarkar et al. use the following metrics to
measure the modularization quality of modules with respect to APIs:

� MII (method interaction index). It measures the extent to which
all external calls made to a module are routed though the APIs
of the module.
� NC (non-API method closeness index). It measures the extent to

which non-API public methods in a module are not called by
other modules.
� APIU (API usage index). It measures the extent to which the

cohesiveness and segregation properties are followed by the
S-APIs of a module.

The second category is to measure the quality of modules with
respect to inter-module couplings created by inheritance and asso-
ciation. Inheritance and association are the most important two
dependence relationships between classes in a system. The former
denotes that a class extends another class, while the latter denotes
that a class uses another class either as an attribute or as a param-
eter in a method definition. In a real system, it is not uncommon to

1 According to [5], an API in a module is a set of public methods. There exist two
different kinds of APIs in a module: S-API (service API) and E-API (extension API). An
S-API aims to provide a specific service to other modules. An E-API indeed describes
the services that need to be provided by an external plugin for the module. Therefore,
an E-API generally consists of a set of abstract methods whose implementation codes
are provided by the external plugin. A module may have multiple APIs.

Y. Zhao et al. / Information and Software Technology 57 (2015) 186–203 187



Download English Version:

https://daneshyari.com/en/article/6948266

Download Persian Version:

https://daneshyari.com/article/6948266

Daneshyari.com

https://daneshyari.com/en/article/6948266
https://daneshyari.com/article/6948266
https://daneshyari.com

