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a b s t r a c t

We study the controllability and stability of control systems that are nonlinear, and for which, for what-
ever reason, linearization fails. We begin by motivating the need for two seemingly exotic tools: non-
smooth control-Lyapunov functions, and discontinuous feedbacks. With the aid of nonsmooth analysis,
we build a theory around these tools. We proceed to apply it in various contexts, focusing principally
on the design of discontinuous stabilizing feedbacks.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Our interest centers throughout on the standard control system

x0ðtÞ ¼ f xðtÞ;uðtÞð Þ a:e:; uðtÞ 2 U a:e:; ð�Þ

where the dynamics function f : Rn � Rm ! Rn and the control set
U � Rm are given, and ‘a.e.’ is the abbreviation of ‘almost every-
where’. A control on some interval ½a; b� of interest refers to a mea-
surable function uð�Þ defined on ½a; b� and having values in U. By a
trajectory of the system ð�Þwe mean (as usual) an absolutely contin-
uous state function x : ½a; b� ! Rn corresponding to some choice of
control uð�Þ.

It is assumed throughout that f is continuous, U is compact, and
f is locally Lipschitz with respect to the state variable in the follow-
ing sense: for every bounded subset S � Rn, there exists K ¼ Kf ðSÞ
such that

f ðx;uÞ � f ðy;uÞj j 6 Kf x� yj j 8x; y 2 S; u 2 U: ð1Þ

We remark that this Lipschitz behavior is automatically present if f
is continuously differentiable, but differentiability of f is irrelevant
to our discussion. Much more to the point are the assumptions that
are not being made: f is not linear, U is not simply ‘large enough’ to
be effectively ignored.

The central issue under discussion will be the convergence of
state trajectories xðtÞ to an equilibrium, which we take to be the
origin: stability, controllability, and feedback stabilization. Stabil-

ization to the origin is a simple representative of various other
objectives that can be treated by the techniques that we shall de-
scribe. (Stabilization to other target sets will also be involved later.)

One way to steer trajectories to zero is to invent a cost whose
minimization will have that effect. (Indeed, in a certain sense, this
is rather close to being the only effective strategy that we know.)
The positive features of such an approach, as well as certain inher-
ent difficulties which arise when we employ it, are well illustrated
by what is called the dynamic programming technique in optimal
control. It will furnish us with valuable insight into our stabiliza-
tion problem, and provide guidance about the mathematical tools
needed.

1.1. Dynamic programming and minimal time

The minimal-time problem refers to finding a trajectory of ð�Þ
that reaches the origin as quickly as possible from a given initial
point a. Thus we seek the least T P 0 admitting a control function
uð�Þ on ½0; T� having the property that the resulting trajectory x with
xð0Þ ¼ a satisfies xðTÞ ¼ 0. The dynamic programming approach
centers upon the minimal-time function Tð�Þ, defined on Rn as fol-
lows: TðaÞ is the least time T defined above.

The principle of optimality makes two observations about Tð�Þ.
The first of these is that, for any trajectory xð�Þ beginning at a, for
any two times s,t with 0 6 s < t, we have

T xðsÞð Þ 6 T xðtÞð Þ þ t � s: ð2Þ

This reflects the fact that, starting at the point xðsÞ, we may choose the
two-step strategy of following the trajectory x until time t, and then
proceeding optimally from the point xðtÞ to the origin. The time re-
quired for this two-step strategy is the right side of (2); the inequality
holds because there may be a better strategy beginning from xðsÞ.
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The second observation is that equality holds in (2) if x is a tra-
jectory that joins a to the origin in minimal time; that is, if xðTÞ ¼ 0
for T ¼ TðaÞ. This reflects the fact that when x is a minimal-time
trajectory, there is no better strategy than the two-step one de-
scribed above. Combining these two observations, we find that,
for any trajectory xð�Þ, the function t # T xðtÞð Þ þ t is nondecreasing;
it is constant when x is a minimal-time trajectory.

Since t # T xðtÞð Þ þ t is nondecreasing, we expect to have

rT xðtÞð Þ; x0ðtÞh i þ 1 P 0;

with equality when xð�Þ is an optimal trajectory. The possible values
of x0ðtÞ for a trajectory being precisely the elements of the set
f xðtÞ;Uð Þ, we arrive at

min
u2U
rTðxÞ; f ðx;uÞh i þ 1 ¼ 0: ð3Þ

We define the (lower) Hamiltonian function h as follows:

hðx; pÞ :¼min
u2U
hp; f ðx;uÞi: ð4Þ

In terms of h, the partial differential Eq. (3) above reads

h x;rTðxÞð Þ þ 1 ¼ 0; ð5Þ

a special case of the Hamilton–Jacobi equation.
We have now reached the first stage in the dynamic program-

ming approach: solve the Hamilton–Jacobi equation (5), together
with the boundary condition Tð0Þ ¼ 0, to find Tð�Þ. How will this
help us find minimal-time trajectories?

To answer this question, we recall that an optimal trajectory is
such that equality holds in (3). This suggests the following proce-
dure: for each x, let kðxÞ be a point in U satisfying

min
u2U
rTðxÞ; f ðx;uÞh i ¼ rTðxÞ; f x; kðxÞð Þh i ¼ �1: ð6Þ

Then, if we construct xð�Þ via the initial-value problem

x0ðtÞ ¼ f xðtÞ; k xðtÞð Þð Þ; xð0Þ ¼ a; ð7Þ

we obtain a minimum-time trajectory (from a).
Let us see why this so: if xð�Þ satisfies (7), then, in light of (6), we

have

ðd=dtÞT xðtÞð Þ ¼ rT xðtÞð Þ; x0ðtÞh i
¼ rT xðtÞð Þ; f xðtÞ; k xðtÞð Þð Þh i ¼ �1:

Integrating, we find

T xðtÞð Þ ¼ TðaÞ � t;

which implies that at s ¼ TðaÞ, we have T xðsÞð Þ ¼ 0, whence
xðsÞ ¼ 0 (since T is zero only at the origin). Therefore xð�Þ is a min-
imal-time trajectory.

This second stage of the dynamic programming approach has
provided a feedback kð�Þ which, from any initial value a, generates
via (7) a minimal-time trajectory; k constitutes what can be con-
sidered the ultimate solution to our problem: an optimal feedback
synthesis.

We remark that the Hamilton–Jacobi equation (5) has another
use, when we know that it has a unique solution Tð�Þ satisfying
Tð0Þ ¼ 0 (namely, the minimal-time function). We refer to the ver-
ification method in optimal control (see for example Clarke (1989)).
It would work here as follows: suppose we have formulated a con-
jecture that, for each a, a certain trajectory xa is a minimal-time
one from the initial condition a. We proceed to calculate TðaÞ (pro-
visionally) based on this conjecture; that is, by setting TðaÞ equal to
the time required for xa to join a to 0. Then, if the resulting function
T satisfies (5), our conjecture is verified (since, by uniqueness, T
must then coincide with the minimal-time function). If T fails to
satisfy (5), then our conjecture is certainly false (and the way in
which (5) fails may help us amend it).

We now rain on this parade by pointing out that there are seri-
ous obstacles to rigorously justifying the route that we have just
outlined. There is, to begin with, the issue of controllability: Is it al-
ways possible to steer a to 0 in finite time? And if this holds, do
minimal-time trajectories exist? Even if this is true, how do we
know that Tð�Þ is differentiable? If this fails to be the case, then
we shall need to replace the gradientrT used above by some suit-
ably generalized derivative. Next, we would have to examine anew
the argument that led to the Hamilton–Jacobi equation (5), which
itself will require reformulation in some way that allows for non-
smooth solutions. Will the Hamilton–Jacobi equation generalized
in such a way admit T as the unique solution?

Assuming that all this can be done, the second stage above of-
fers fresh difficulties of its own. Even if T is smooth, there is in gen-
eral no continuous function kð�Þ satisfying (6) for each x. When k is
discontinuous, the classical concept of ‘solution’ to (7) is inappro-
priate; what solution concept should we use instead? Would opti-
mal trajectories still result?

That these difficulties are real, and indeed that they arise in the
simplest problems, can be illustrated by the following example,
familiar from any introductory text in optimal control.

The double integrator. This refers to the system x00 ¼ u, or, in
terms of the standard formulation ð�Þ:

x0ðtÞ ¼ yðtÞ; y0ðtÞ ¼ uðtÞ; uðtÞ 2 ½�1;þ1�: ð8Þ

Thus n = 2, m = 1, and the dynamics are linear. It is not difficult to
show that all initial points ðxð0Þ; yð0ÞÞ ¼ ða; bÞ are controllable to
the origin in finite time; existence theory tells us that minimal-time
trajectories exist. The Maximum Principle helps us to identify them:
they turn out to be bang–bang with at most one switch between +1
and �1. We can then calculate the minimal-time function Tð�Þ:

Tða; bÞ ¼
�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2 � 4a

q
when ða; bÞ is left of S

þbþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2 þ 4a

q
when ða; bÞ is right of S;

8><
>:

where the switching curve S in the x � y plane is given by y2 ¼ 2jxj;
see Fig. 1. The resulting function Tð�Þ is seen to be continuous, but it
fails to be differentiable or even locally Lipschitz along the switch-
ing curve. The optimal feedback synthesis consists of taking (k = �1
to the right or on the upper branch) of S, and k = +1 otherwise.

We see therefore that our doubts correspond to real difficulties,
and they explain why the dynamic programming approach to opti-
mal control, very prominent in the 1950s and 60s, is now fre-
quently ignored in engineering texts, or else relegated to a
heuristic role, perhaps in exercises. In fact, however, the difficulties
have now been successfully and rigorously resolved, through the
use of nonsmooth analysis, viscosity solutions, and discontinuous
feedbacks. These very same tools will play a central role in the sta-
bilization issue, which we turn to now.

Fig. 1. The double integrator: switching curve and optimal synthesis.
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