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Abstract

General delay dynamical systems in which uncertainty is present in the form of probability measure dependent dynamics are considered.

Several motivating examples arising in biology are discussed. A functional analytic framework for investigating well-posedness (existence,

uniqueness and continuous dependence of solutions), inverse problems, sensitivity analysis and approximations of the measures for computational

purposes is surveyed.
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1. Introduction

The purpose of this presentation is to survey recent as well

as forthcoming results in our research efforts on models with

delays and hysteresis where probabilistic uncertainty is

present in a significant way. While we focus our motivation

here on examples arising in biological applications (Banks &

Bihari, 2001; Banks, Bortz, & Holte, 2003; Banks, Bortz,

Pinter, & Potter, 2003; Banks & Bortz, 2005a,b; Banks &

Davis, 2006; Banks & Pinter, 2005; Banks, Bokil et al., 2006;

Banks & Nguyen, 2006; Banks, Dediu, & Nguyen, 2006),

similar systems arise in other applications as diverse as

materials (Banks, Hood, & Medhin, submitted for publica-

tion; Banks, Kurdila, & Webb, 1997a,b; Banks, Medhin, &

Pinter, 2004; Banks, Medhin, & Pinter, 2007; Banks,

Medhin, & Pinter, submitted for publication; Banks &

Pinter, 2005), electromagnetics (Banks & Gibson, 2005;

Banks & Gibson, 2006), physics, communication networks,

etc. As is explained here, there are a wide class of models

related to cellular level population dynamics that lead to

systems of the form:

ẋðtÞ ¼
Z 0

�r

xðt þ uÞ dPðuÞ þ f ðt; xðtÞÞ (1)

where P is a generally unknown probability measure that must be

estimated from aggregate or population level (as opposed to

individual level) observations or data. The probability measure P

(which we shall also refer to as a probability distribution when no

confusion results) may be discrete, absolutely continuous (con-

tinuous) or a combination of both. In addition to the obvious

inverse problems, there are fundamental questions related to

modeling of uncertainty, well-posedness, sensitivity, estimation

and approximation. The primary goal of this note is to outline a

theoretical and computational framework to treat these problems.

2. Example from cellular pathways: HIV infection

Our first example is typical of delay systems that arise in

biochemical pathways and cellular level kinetics of drug

metabolism as well as other synthesis models. In Banks et al.

(2003) and Banks and Bortz (2005a) the authors study a model

for progression of Human Immunodeficiency Virus (HIV) at the

cellular level. The model involves compartments T ;A;C; and V

for in vitro blood level counts in mice of target (CD4 þ) cells,

acutely infected cells, chronically infected cells and active viral

particles, respectively. Free virus V infects target cells T,
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transforming them into acutely infected cells A which at some

time later become chronically infected cells C. The basic

pathway for infection and production of virus for acutely

infected cells is schematically depicted in Fig. 1. For models in

which the individual kinetics for loss of envelope and capsid,

integration, transcription, and assembly are not detailed, it is

necessary (see Banks et al., 2003) to include a delay t1 from the

time of infection of a target cell T until it first produces free

virus V. There is also some delay t2 before an acutely infected

cell A becomes a chronically infected cell C.

Here we outline a brief derivation from first principles (with

assumptions based on the biology) that supports a mathematical

model in which the delays are treated as probabilistically

distributed across the population of cells found in a typical in

vitro culture.

First consider the delay between initial acute infection and

the cell becoming what is termed a chronically infected cell

characterized by differences in cell dynamics (see Banks et al.,

2003). It is biologically unrealistic (and unacceptable in the

modeling to biologists) to expect an entire population of cells to

simultaneously change infection characteristics precisely

t2ðt2 > 0Þ hours after initial viral infection. Therefore, one

might suppose that the delay between initial acute infection and

chronic infection varies across the cell population (thus

mathematically characterizing the intercellular variability)

according to a probability distribution P̄2 (which is not

assumed to necessarily possess a density p̄2—it could have

point masses). Denote by Cðt; tÞ the subpopulation consisting

of chronically infected cells that either maintained their acute

infection characteristics for t time units or are the progeny of

those same cells. In other words, for some t> 0, there exists a

subpopulation Cðt; tÞ of the chronically infected cells which

either spent t hours as acutely infected cells (before converting

to chronically infected cells) or are descendants of cells that

spent exactly t hours as acutely infected cells. Thus, the rate of

change in this subpopulation of cells is governed by

Ċðt; tÞ ¼ ðrv � dC � dXðtÞÞCðt; tÞ þ gAðt � tÞ;

where

XðtÞ ¼ AðtÞ þ CðtÞ þ TðtÞ

is the total number of CD4þ cells (infected and uninfected).

The expected value of the population of chronic cells is given

by integrating with respect to the distribution P̄2, over all

possible delay values, obtaining

CðtÞ ¼ E2½Cðt; tÞ� ¼
Z 1

0

Cðt; tÞ dP̄2ðtÞ: (2)

Here the parameters rv; dC; d and g are appropriate rate para-

meters (for details, see Banks et al., 2003). Therefore, the rate

of change in the total population of chronic cells is governed by

ĊðtÞ ¼ E2½Ċðt; tÞ�

¼ ðrv � dC � dXðtÞÞE2½Cðt; tÞ� þ g

Z 1
0

Aðt � tÞ dP̄2ðtÞ;

Cð0Þ ¼ C0;

Fig. 1. HIV infection pathway in acutely infected cells.
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