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Identification of intrinsic characteristics and structure of high-dimensional data is an important task for financial
analysis. This paper presents a kernel entropy manifold learning algorithm, which employs the information metric
to measure the relationships between two financial data points and yields a reasonable low-dimensional represen-
tation of high-dimensional financial data. The proposed algorithm can also be used to describe the characteristics of
a financial system by deriving the dynamical properties of the original data space. The experiment shows that the
proposed algorithm cannot only improve the accuracy of financial early warning, but also provide objective criteria
for explaining and predicting the stock market volatility.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Traditional financial analysis methodologies include quantitative
model and textual analysis. The quantitative model is the analysis
about financial data by the use of statistical analysis tools or artificial
intelligence technologies, which relies on the selection about basic
important factors, such as financial ratios, technical indexes, andmacro-
economic indexes [1]. The textual analysis utilizes text mining
techniques to analyze the context of financial reports, which are depen-
dent on the identification of a predefined set of keywords [2]. Since
different factors or keywords are selected for different studies, the
results are often subjective.

The real financial indicators are numerous while the complex
high-dimensional data tends to obscure the essential feature of data
[4]. Identifying intrinsic characteristics and structure of high-
dimensional data is important for financial analysis. Inspired by the
Quantitative Structure–Property Relationship (QSPR) method [3],
whose core idea is that the microscopic structure of a material deter-
mines its macroscopic properties, this paper tries to find the inherent
relationships between data points of financial dataset, and further de-
rive the overall characteristics of the financial system.

Manifold learning, which explores the inherent low-dimensional
manifold structure of high-dimensional data, is a valid choice for this
task. In the field of financial analysis, data information characteristics,

i.e. probability distributions, are important. However, many existing
manifold learning algorithms concern about space geometric character-
istics [5–8]. When Probability Density Functions (PDFs) are constrained
to form a sub-manifold of interest, the straight-shot distance is no lon-
ger an accurate description of the manifold distance [50]. For financial
data sets, each data point represents a listed company, while the
distance between the data points indicates the degree of difference be-
tween the financial positions of listed companies. If the difference was
characterized only by the geometric space distance between data
points, it may not only unfit the practical significance of financial analy-
sis, but also cause problems in the subsequent analysis. Therefore, this
study employs the information metric to measure the relationships
between listed companies and obtains the relationship metric model.

Real-world financial data is often nonlinear [10] and linear mapping
manifold learning cannot fully capture the data information. Though
Qiao et al. proposed a nonlinear mapping [11], the method is too com-
plicated for the current problem. Kernel is often used to discover nonlin-
ear structure in data [12,13]. The objective of this paper is to propose a
kernel entropy manifold learning (KEML) algorithm to obtain the low-
dimensional representation of high-dimensional financial data from
the perspective of manifold learning. The KEML algorithm is extended
to a kernel feature space so that the low-dimensional embedding can
reflect the characteristics of the original financial data set. Experiments
using small and medium-sized companies from China A-share Stock
Market are designed to validate the proposed algorithm.

The rest of the paper is organized as follows: Section 2 reviews relat-
ed works. Section 3 describes the modeling of financial data manifold
and the proposed algorithm. Section 4 reports the experimental study
and the last section concludes the paper.
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2. Literature review and preliminaries

2.1. Machine learning in financial analysis

Over the past few decades, machine learning algorithms have
been widely used in the financial field and have been reported to
be quite effective in some cases [14]. Machine learning quantitative
models include single algorithms, such as ANN [15–17], SVM
[18–20] and SOM [21,22], and hybrid techniques, which combine
two or more algorithms. Many studies have been conducted to
develop hybrid techniques for financial analysis. Serrano-Cinca and
Gutiérrez-Nieto [23] combined partial least square (PLS) regression
model and principal component analysis (PCA) and multiple linear
regression (MLR) for bankruptcy prediction. Yolcu et al. [24] used a
hybrid artificial neural network containing linear and nonlinear
components for time series forecasting. Kao et al. [25] combined
multivariate adaptive regression splines (MARS) and support vector
regression (SVR) for stock index forecasting. Lu et al. [26] used inde-
pendent component analysis (ICA) and support vector regression
(SVR) in financial time series forecasting.

Context-based text analysis had been used to analyze unstruc-
tured data in financial reporting. Groth and Muntermann [27] and
Chan and Franklin [2] and Humpherys et al. [28] adopted text mining
technology to analyze the unstructured data of financial reports to
improve prediction accuracy of financial risk. Schumaker and Chen
[29] used textual representations of financial news articles to esti-
mate the discrete stock price. Olson et al. [30] compared data mining
methods for bankruptcy prediction.

The financial dataset can be considered as a system, in which each
data point is an element. The intrinsic relationships between elements
constitute the system structure, which determines the characteristics
of the system. Inspired by the idea of QSPR, this study tried to explore
the intrinsic structure of the system, and then discover the overall status
of the system.

2.2. Manifold learning

Amanifold is a topological space which is locally Euclidean. High-
dimensional data observed in real world are often the consequences
of a small number of factors [31]. Manifold learning algorithms as-
sume that the input data resides on or close to a low-dimensional
manifold embedded in the ambient space [32]. Thus it is possible to
construct a mapping that obeys certain properties of the manifold
and obtain low-dimensional representation of high-dimensional
data with good preservation of the intrinsic structure in the data
[32].

Currently dimension reduction techniques are mainly divided
into two categories: linear and nonlinear methods. The most well
known linear method is principal component analysis (PCA), which
is based on correlationmatrices [38]. PCA is a classical feature extrac-
tion and data representation techniquewidely used in pattern recog-
nition and computer vision. Sirovich and Kirby utilized PCA to
represent pictures of human faces [54]. Turk and Pentland presented
the well-known Eigenfaces method for face recognition in 1991 [54].
Kernel PCA (KPCA), a kernel extension of PCA, is also a very influen-
tial method. KPCA performs traditional PCA in a kernel feature space,
which is nonlinearly related to the input space [38].

Compared with traditional dimension reduction approaches,
manifold learning has advantages such as nonlinear nature, geometric
intuition, and computational feasibility. Many manifold learning
methods have been developed over the years. Isometric Feature
Mapping (ISOMAP) [6] and Locally Linear Embedding (LLE) [7] are the
earliest ones. The key idea of ISOMAP algorithm is to preserve the
geodesic distance among points on the manifold and embed data into
low-dimensional space by multidimensional scaling. LLE computes the
reconstruction weights of each point and then minimizes the

embedding cost by solving an eigenvalue problem to preserve the prox-
imity relationship among data.

Local tangent space alignment (LTSA) constructs local linear
approximations of themanifold in the form of a collection of overlap-
ping approximate tangent spaces at each sample point, and then
aligns those tangent spaces to obtain a global parameterization of
the manifold [5]. LTSA maps the high dimensional data points on a
manifold to points in a lower dimension Euclidean space. This map-
ping is isometric if the manifold is isometric to its parameter space
[5]. Local Multidimensional Scaling (LMDS) is a data embedding
method based on the alignment of overlapping locally scaled patches
[8] and inputs are local distances. A subset of overlapping patches is
chosen by a greedy approximation algorithm of minimum set cover.
The patches are aligned to derive global coordinates and minimize a
residual measure. LMDS is locally isometric and scales with the num-
ber of patches rather than the number of data points. LMDS produces
less deformed embedding results than LLE [8].

These manifold learning algorithms use geodesic distance metric or
weight measurement to calculate similarities between data points. In
many problems of practical interest, however, the manifold geometry
is unavailable and the calculation of geodesics must be done in a
model-free, nonparametric fashion [34]. In applications like financial
analysis, for example, only considering the geometry structure of data
space may miss some essential characteristics of data and destroy the
proximity relations (topology) of the original data space [9].

2.3. Information distance metric

This study adopted an information theory-based metric to measure
the difference between data points. Shannon suggested that “informa-
tion entropy plays a central role in information theory asmeasures of in-
formation, choice, and uncertainty” [35]. Kolmogorov complexity [36]
measures information content of an object. Bennett et al. [37] proposed
the information distance theory and proved the fundamental universal
theorem. Information distance measures the essential relationship
between things. Due to its parameter-free, feature-free, and alignment-
free characteristics, it can be used to deal with unstructured and incom-
prehensible data. A distance is a function Dwith nonnegative real values,
defined on the Cartesian productX×X of a setX. It is called ametric onX if
for every x, y, z ∈ X:

� D x; yð Þ ¼ 0 iff x ¼ y the identity axiomð Þ;

� D x; yð Þ þ D y; zð Þ ≥ D x; zð Þ the triangle inequalityð Þ;

� D x; yð Þ ¼ D y; xð Þ the symmetry axiomð Þ:

A set X provided with a metric is called a metric space. For example,
every set X has the trivial discrete metric D(x, y) = 0 if x = y and D(x,
y)=1otherwise [37]. The informationmetric between stochastic sources
X and Y is defined asD(x, y)=H(x|y)+H(y|x) [37]. HereH(x|y) is used to
measure the difference between probability distributions.

In recent years, entropy-based distancemetric has been investigated
by the manifold learning field. Costa and Hero [33] proposed geodesic-
minimal-spanning-tree (GMST) method that jointly estimates both
the intrinsic dimension and intrinsic entropy on the manifold. Jenssen
[38] developed kernel entropy component analysis (KECA) for data
transformation and dimensionality reduction. KECA reveals structure
relating to the Renyi entropy of the input space data set. Carter et al.
[34] proposed Fisher Information Nonparametric Embedding (FINE)
which utilizes the properties of information geometry and statistical
manifolds to define similarities between data sets using Fisher informa-
tion distance. FINE showed that this metric can be approximated using
nonparametric methods. Carter et al. [50] presented methods for
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