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A B S T R A C T

From some empirical and theoretical research on the digital elevation model (DEM) accuracy obtained for
different source data densities, it can be observed that when the same degree of data reduction is applied to a
whole area, the rate of change in the DEM error is statistically greater in local areas where the surface is rougher.
Based on this observation, it is possible to characterize surface roughness or complexity from the differences
between two digital elevation models (DEMs) built using point clouds that represent the same terrain surface but
are of different spatial resolutions (or data spacings). Following this logic, a new approach for estimating surface
roughness is proposed in this article. Numerical experiments are used to test the effectiveness of the approach.
The study datasets considered in this article consist of four elevation point clouds obtained from terrestrial laser
scanning (TLS) and airborne light detection and ranging (LiDAR). These types of topographical data are now
used widely in Earth science and related disciplines. The method proposed was found to be an effective means of
quantifying local terrain surface roughness.

1. Introduction

Terrain surface roughness is an important parameter for describing
terrain surface variability or complexity in Earth science. It is often used
for investigating the DEM error and its spatial variation because DEM
accuracy is affected by terrain surface complexity (Ackermann, 1996;
Carlisle, 2005a; Aguilar et al., 2005, 2010; Kraus et al., 2006). It is also
commonly used for studying Earth surface processes and landforms
(Milenković et al., 2015; Hobson and Chorley, 1972; Nield and Wiggs,
2011; Grohmann et al., 2011). In the literature, there exist a wide range
of methods for estimating surface roughness, for example, the root
mean square height (RMSH) or standard deviation of residual elevation
over a particular scale (Milenković et al., 2015; Nield and Wiggs, 2011;
Grohmann et al., 2011; Frankel and Dolan, 2007), standard deviation of
slope or curvature (Grohmann et al., 2011; Frankel and Dolan, 2007),
power spectrum (Milenković et al., 2015), analysis of fractal dimension
(Andrle and Abrahams, 1989) and geostatistical analysis (Huang and
Bradford, 1992; Herzfeld et al., 2000). However, due to the wide
variety of applications for this parameter, a single definition of terrain
surface roughness may not be possible as its nature and calculation
often depend on the type of analysis or application (Grohmann et al.,
2011), and also the types of data used for calculating terrain surface
roughness. This study concerns the quantification of local surface

roughness for applications where the local DEM error is of interest. In
recent years, scattering point cloud data obtained from terrestrial laser
scanning (TLS) and airborne light detection and ranging (LiDAR) have
been used widely for characterising terrain surfaces. For such data, the
method commonly used for estimating terrain surface roughness is
RMSH or standard deviation of residual elevation (Nield and Wiggs,
2011; Hugenholtz et al., 2013; Brubaker et al., 2013), which is also a
typical roughness descriptor for the cases where surface roughness
needs to be quantified to investigate DEM accuracy.

To create a grid-based DEM or predict elevations at points where no
source data are available, spatial interpolation is commonly used. At a
predicted point, the elevation error (i.e., the difference between the
predicted elevation and the reference elevation) consists of two com-
ponents: (1) propagated measurement error and (2) interpolation error
(or modelling error) (Fisher and Tate, 2006; Aguilar et al., 2006;
Makarovic, 1973). The former error component is data-based, being
strictly concerned with the source data used for interpolation (Fisher
and Tate, 2006). The latter component is model-based, being concerned
with how well the interpolation technique extends the data to the
prediction point.

Data sampling interval is a critical factor for DEM accuracy
(Makarovic, 1973; Frederiksen, 1981; Frederiksen et al., 1986; Li,
1994). For a given interpolation method, the local interpolation error is
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affected mainly by the local spacing of source data and the local
roughness of a topographic surface (Aguilar et al., 2005; Fan et al.,
2014; Guo et al., 2010; Hu et al., 2009). If one holds the spacing of
source data constant over a whole area, the local interpolation error is
then affected mainly by the local roughness. In other words, when the
spacing of the source data used to build a DEM is the same, the local
interpolation errors will be spatially variable and closely correlated to
local terrain surface roughness (statistically the local interpolation error
is expected to be greater at locations where the terrain surface is
rougher or more complex). These are confirmed by various theoretical
and empirical studies in the literature (Davis et al., 2001; Liu and Jezek,
1999; Carlisle, 2005b; Li, 1993; Erdogan, 2009; Liu et al., 2015;
Hodgson and Bresnahan, 2004; Aguilar and Mills, 2008). In applica-
tions where the DEM error is of interest, an effective descriptor of local
terrain surface roughness should, therefore, be consistent with the
aforementioned behaviour. In this context, the effectiveness of such a
descriptor is determined by the magnitude of the correlation between
the estimated local roughness and the local DEM interpolation error. In
the literature, the correlation between the global surface roughness and
the global DEM error was investigated using datasets that represent
terrain surfaces of different terrain morphologies at different sites
(Aguilar et al., 2005, 2006). In these cases, as the surface roughness of
the DEMs considered varied significantly, commonly used surface
roughness descriptors are sufficient to produce a large correlation be-
tween global roughness and global DEM error (Aguilar et al., 2006).
However, for a terrain surface of similar morphology (i.e. at the same
site), it is not well understood quantitatively if commonly used error
statistics (e.g. RMSH) are able to estimate the local surface roughness
that is strongly correlated to the local DEM error.

As a widely used local surface roughness descriptor for scattered
point cloud data, the RMSH was evaluated against local interpolation
errors in this study. A conditional leave-one-out technique (i.e., con-
ditioned by an equal data spacing of point cloud data) was used to
estimate the local interpolation errors, which were then compared with
the RMSH roughness values to investigate the effectiveness of the
RMSH statistic. A comparatively small correlation between the local
RMSH and the local interpolation error was observed. To develop a
more effective alternative, a new approach was proposed for estimating
local terrain surface roughness through the differences between two
DEMs constructed using two point cloud datasets that represent the
same terrain surface, but are of different spatial resolutions. This new
approach is referred to as the multi-resolution method. The effective-
ness of these methods (the RMSH and the multi-resolution approach) is
compared.

2. Methods

2.1. Study data

The study datasets considered in this research include a TLS point
cloud and three airborne LiDAR point clouds. These datasets represent a
mix of different cases (different types of terrain, different roughness
features, different scales of spatial variation in the elevation data). The
TLS point cloud was used as the main dataset for demonstrating the
multi-resolution method and the associated data processing. The air-
borne LiDAR point clouds were used to test the transferability of the
multi-resolution method.

The TLS point cloud represents a slightly rough clayey soil surface
surveyed by a ScanStation C10. It consists of 34,163 points over an area
of approximately 3.4 m by 3.4 m. Fig. 1a shows a subsample (i.e., the
dotted points) of the original TLS point cloud for clear visualization,
and the DEM built using the original point cloud. The subsample was
obtained in such a way that each individual data point has similar
distances to its neighbouring data points. This is also a requirement of
the multi-resolution method proposed, which is elaborated in a sub-
sequent section. There is a global linear trend in elevation, which was

removed to visualise the surface variability. In other words, the data
shown in Fig. 1a represent residual elevations.

The spatial resolution (typically in metres) of data sampling by
airborne LiDAR is much coarser than that (typically in several or tens of
millimetres) by TLS. This leads to different scales of spatial variation in
the elevation data measured. The airborne LiDAR point clouds con-
sidered represent three bare terrain surfaces of distinct characteristics: a
comparatively flat and rough surface Fig. 1b), a hilly and relatively
smooth surface Fig. 1c), and a hilly and relatively rough surface
Fig. 1d), which are referred to as LiDAR-1, LiDAR-2 and LiDAR-3, re-
spectively. Each LiDAR dataset covers an area of approximately 340m
by 340m, and consists of 81,531 (LiDAR-1), 71,467 (LiDAR-2) and
87,275 (LiDAR-3) data points classified as bare ground. These LiDAR
datasets were acquired by the National Centre for Airborne Laser
Mapping, USA. LiDAR-1 comes from a large LiDAR dataset acquired
along the north inner coastline of Cape Cod (Massachusetts, USA) with
a total area of 37.106 km2. LiDAR-2 and LiDAR-3 data were selected
from a large LiDAR dataset (for a surface area of 366.64 km2) acquired
at a volcanic field in Central Nevada, USA.

2.2. Benchmark: the leave-one-out error for evenly distributed data points

In this Section, cross-validation is introduced, followed by an ela-
boration of the logic of the leave-one-out error (obtained under the
condition of an equal data spacing for a point cloud) being used as a
benchmark to evaluate the adequacy of a surface roughness measure.

In the literature concerning DEM accuracy, cross-validation is used
widely for estimating how accurately a prediction model (or inter-
polation method) performs. In one round of cross-validation, a subset
(validation dataset) of original data is held out and a model is fitted to
the remaining data (training dataset). The model obtained is then used
to predict the validation dataset. Much research work has been carried
out to investigate the prediction accuracies of interpolation methods for
building DEMs using cross-validation (Aguilar et al., 2005, 2006;
Erdogan, 2009; Wise, 2011). In those research, to enable the analysis of
the prediction errors, the validation dataset (i.e. check points) is often
assumed to have negligible or zero measurement errors (Aguilar et al.,
2005, 2006; Erdogan, 2009; Wise, 2011). This assumption is also
adopted in this article but may be understood as follows. The topo-
graphic data contaminated by measurement errors are assumed to be
new data that are free of measurement errors. In this case, the mea-
surement errors associated with the true terrain surface are simply
treated as a part of the natural spatial variability in the new data. In
other words, the study object considered is the contaminated terrain
surface rather than the true, error-free terrain surface. As the in-
vestigation reported in this article is on the adequacy of the methods
considered for describing the roughness of a terrain surface, the error-
contaminated surface represents an appropriate test dataset.

The leave-one-out method is a commonly used form of cross-vali-
dation for evaluating the interpolation error (Erdogan, 2009; Smith
et al., 2005). In each iteration, a data point is removed from the original
topographic dataset, and the remaining data points and a specified in-
terpolation algorithm are used to predict the elevation value at the
location where the data point is removed. The predicted value is
compared to the observed value at the point removed, and their dif-
ference is referred to as the leave-one-out error. This process is repeated
for all data points (note that the previously removed data point is re-
placed into the dataset at each iteration), leading to a set of leave-one-
out errors (one for each data point location).

Given that the measurement errors in the test datasets are treated as
natural spatial variation, the only error component for a predicted
elevation value is the interpolation error. In this case, the leave-one-out
errors represent the local DEM interpolation errors at all data point
locations. The interpolation error is a function of the source data spa-
cing and the terrain surface variability locally (as discussed in the
Introduction), and so is the leave-one-out error. If one holds the data
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