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A B S T R A C T

Accurate estimation of vegetation phenology (the start/end of growing season, SOS/EOS) is important to un-
derstand the feedbacks of vegetation to meteorological circumstances. Because the evergreen forests have lim-
ited change in greenness, there are relatively less study to predict evergreen conifer forests phenology, especially
for EOS in autumn. Using 11-year (2000–2010) records of MODIS normalized difference vegetation index
(NDVI) and enhanced vegetation index (EVI), together with gross primary production (GPP) and temperature
data at five evergreen conifer forests flux sites in Canada, we comprehensively evaluated the performances of
several variables in modeling flux-derived EOS. Results showed that neither NDVI nor EVI can be used to predict
EOS as they had no significant correlation with ground observations. In comparison, temperature had a better
predictive strength for EOS, and R2 between EOS and mean temperature (Tmean), the maximum temperature
(Tmax, daytime temperature) and the minimum temperature (Tmin, nighttime temperature) were 0.45
(RMSE=5.1 days), 0.32 (RMSE=5.7 days) and 0.58 (RMSE=4.6 days), respectively. These results suggest an
unreported role of nighttime temperature in regulating EOS of evergreen forests, in comparison with previous
study showing leaf-out in spring by daytime temperature. Furthermore, we demonstrated that it may be because
nighttime temperature has a higher relationship with soil temperature (Ts) (R2=0.67, p < 0.05). We then
developed a new model combining Tmin and EVI, which improved EOS modeling greatly both for these five flux
sites and also for data collected at nine PhenoCam sites. Our results imply that the accuracy of current remote
sensing VI estimated EOS should be used cautiously. In particular, we revealed the usefulness of nighttime
temperature in modeling EOS of evergreen forests, which may be of potential importance for future ecosystem
models.

1. Introduction

Substantial studies suggest that climate warming will probably in-
crease vegetation growth in northern terrestrial ecosystems, especially
forest ecosystems, which have great influence on carbon sequestration
(Buitenwerf et al., 2015; de Moura et al., 2017; Nemani et al., 2003;
Wolkovich et al., 2012). Plant phenology is widely used as an in-
dependent measure and powerful indicator of how ecosystems are re-
sponding to climate change (Fu et al., 2015; Gonsamo et al., 2012;
Richardson et al., 2010; Wu et al., 2017). The definition of phenology
(the start of growing season and the end of growing season, SOS and
EOS) by the International Biological Program (IBP) (Helmut, 1974),
suggests that phenology is affected by numerous factors (e.g.

temperature, precipitation, photoperiods, etc.) (Peng et al., 2017a;
Richardson et al., 2013; Singh et al., 2017; Tylewicz et al., 2018; Yang
et al., 2015). Previous study demonstrates that temperature is an im-
portant input for phenological models (Schwartz, 2003). Therefore,
quantify the influence of meteorological variables, especially tem-
perature, on phenology has become an urgently needed task for im-
proving our understanding between plant productivity and climate
change.

Recent studies have reported many predictive methods in detecting
phenology (SOS/EOS), and those methods can be mainly divided into
two categories: dynamic threshold and derivative method (Hmimina
et al., 2013; Melaas et al., 2013; Running et al., 2004; Schimel et al.,
2015; Schwartz, 2003; Zhang et al., 2003). Forests are the most
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important ecosystems in terrestrial carbon budget, and many studies
have reported phenology modeling of deciduous forests (Pan et al.,
2011; Peng et al., 2017b). For example, Gill et al. (2015) use meta-
analysis to compare temperature, photoperiod and precipitation on
autumn senescence, and demonstrate that temperature is the strongest
predictor of date of senescence, and high-latitude sites are more sen-
sitive to photoperiod. Fu et al. (2015) verified that global warming
reduces chilling for dormancy release, resulting in a slowdown in ad-
vance of tree spring phenology. Tanja et al. (2003) showed that spring
mean temperature (Tmean) is a main factor contributing to the recovery
of evergreen boreal forest. Though Tmean has the potential in explaining
phenology, the explanation is rather limited in several regions. Piao
et al. (2015) suggested the maximum daytime temperature (Tmax) ra-
ther than Tmean or the minimum nighttime temperature (Tmin) triggered
SOS of northern ecosystems. Other studies suggest that Tmin has a
higher correlation with several vegetation variables (e.g. net primary
production, NPP, etc.) and is more sensitive to ecosystem productivity
in spring (Alward et al., 1999). Further evidence shows that Tmin have a
closer relationship with rice grain yield than Tmax or Tmean (Peng et al.,
2004).

Evergreen forests have limited seasonal dynamics of greenness and
the drivers of their phenology are more complex than deciduous forests
(Hmimina et al., 2013). This may partly explains that there are fewer
studies on estimating the phenology of evergreen forest than for de-
ciduous forest (Melaas et al., 2013). This problem becomes even more
severe for detecting the autumn senescence since this period sustains a
much longer and slower change of canopy greenness compared to that
of spring phenology (White et al., 2014; Wu et al., 2014). To this end,
Liu et al. (2016b) produced a new model combining vegetation index
and coefficient of land surface temperature variation in estimating
evergreen conifer forest EOS, which improved the estimation accuracy.

Drivers controlling on the end of the growth season remain largely
unknown (Gill et al., 2015; Keenan and Richardson, 2015; Liu et al.,
2016a). Considering these, we comprehensively investigated the use-
fulness of remote sensing and temperature based phenology in this
study. For remote sensing phenology, we used both the NDVI/EVI and
the phenology from the logistic function processed EVI time series to
present the prediction performance only by vegetation index. For
temperatures, we used three variables, including the autumn mean
temperature, the maximum temperature (i.e., daytime temperature)
and the minimum temperature (i.e., nighttime temperature) to further
compare prediction performances of temperature variables and the
combination of temperature and vegetation index on EOS. The overall
objectives are (1) to analyze the potential of preseason VI as an in-
dicator of EOS, (2) to compare the predictive strength of daytime,
nighttime and mean temperatures for the estimation of EOS, (3) to
develop a new algorithm for modeling EOS combining remote sensing
and meteorological observations, and (4) validate our new model both
at nine independent PhenoCam sites and compare with the algorithm
reported in Liu et al. (2016b).

2. Materials and methods

2.1. Flux sites

We selected five boreal flux sites in Canada composed of evergreen

conifer trees (e.g. fir, black spruce tree, et al.), and latitudes of these
flux sites ranged from 49.87°N to 55.88°N with relatively long data
records (i.e., more than 8 years duration of observations). Five ever-
green conifer forests sites were the Saskatchewan Western Boreal
Mature Black Spruce (CA-OBS), Saskatchewan Western Boreal Mature
Jack Pine (CA-OJP), British Columbia 1999/2000 Clearcut Douglas-fir
stand (CA-CA2), British Columbia 1949 Douglas-fir stand (CA-CA1) and
Manitoba Northern Old Black Spruce (CA-MAN). The climate of these
sites can be divided into two categories that were subarctic climate and
marine coast climate, and CA-OBS, CA-OJP and CA-MAN belong to
subarctic climate (e.g. severe winter, no dry season and cool summer)
while the other two sites belong to marine coast climate (e.g. mild with
no dry season, warm summer). Detailed descriptions of flux sites are
provided in Table 1.

Half-hourly CO2 fluxes and meteorological data were collected for
the five sites from http://ameriflux.lbl.gov/. The data includes tem-
perature (T), gross primary production (GPP) and soil temperature (Ts),
and the daily data were integrated based on the gap-filled and friction
velocity half-hourly readings (Urbanski et al., 2015). The data were
gap-filled using the Artificial Neural Network (ANN) (Papale and
Valentini, 2003) or the Marginal Distribution Sampling (MDS) method
for the missing data (Reichstein et al., 2005). We used the same data
preprocessing method in our analysis to eliminate the impact of the
pretreatments on the later comparison.

PhenoCam network data provide a time series of vegetation phe-
nological observations for diverse ecosystems of North America and
Europe from 2000 to 2015 (https://daac.ornl.gov/VEGETATION/
guides/PhenoCam-V1.html). The phenology data were derived from
conventional visible-wavelength automated and networked digital
camera at each site to monitor plant phenology. The data products can
be used for validation and development of phenological models to
better understand relationships between canopy phenology and eco-
system processes (Keenan et al., 2014; Sonnentag et al., 2012). We
selected nine sites that are dominated by the evergreen conifer forests
for our analysis. Detailed descriptions of PhenoCam sites are given in
Table 2.

2.2. Observed EOS

A Savilzky-Golay filter, using polynomial regression and weights,
was adopted to derive smoothed curves for daily GPP observations, and
smoothed values of daily GPP were used to calculate the onset and
offset of photosynthesis, which were referred to as observed SOS and
EOS (Wu et al., 2013). The start and the end of growing season were
defined as the first and the last days when the smoothed daily GPP
reached 10% of the seasonal maximum daily GPP, respectively (Wu
et al., 2012) (Fig. 1). This method allows variations of maximum GPP
values and suitable for different spatial and temporal variations com-
pared to a fixed GPP threshold (Wu et al., 2013).

2.3. Modeled EOS

2.3.1. EOS based on NDVI and EVI
We used autumn mean NDVI and EVI (September to October) of the

flux site as indicators of EOS. Both NDVI and EVI were extracted from
MOD13Q1 products (16-day temporal resolution and 250m spatial

Table 1
Study site locations along with Fluxnet site IDs, years of data analyzed and references.

Site-ID Site-name Latitude Longitude Elevation (m) Data range Reference

CA-OBS Saskatchewan Western Boreal, Mature Black Spruce 53.99 −105.12 629 2000–2010 Barr et al. (2004)
CA-OJP Saskatchewan Western Boreal, Mature Jack Pine 53.92 −104.69 579 2000–2010 Coursolle et al. (2006)
CA-CA1 British Columbia 1949 Douglas-fir stand 49.87 −125.33 300 2001–2009 Jassal et al. (2009)
CA-CA2 British Columbia Clearcut Douglas-fir stand (harvested winter 1999/2000) 49.87 −125.29 300 2001–2009 Jassal et al. (2009)
CA-MAN Manitoba Northern Old Black Spruce 55.88 −98.48 259 2000–2008 Dunn et al. (2007)
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