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a b s t r a c t

Laser scanning generates a point cloud from which geometries can be extracted, but most methods strug-
gle to do this automatically, especially for the entirety of an architecturally complex building (as opposed
to that of a single façade). To address this issue, this paper introduces the Improved Slicing Method (ISM),
an innovative and computationally-efficient method for three-dimensional building segmentation. The
method is also able to detect opening boundaries even on roofs (e.g. chimneys), as well as a building’s
overall outer boundaries using a local density analysis technique. The proposed procedure is validated
by its application to two architecturally complex, historic brick buildings. Accuracies of at least 86% were
achieved, with computational times as little as 0.53 s for detecting features from a data set of 5.0 million
points. The accuracy more than rivalled the current state of the art, while being up to six times faster and
with the further advantage of requiring no manual intervention or reliance on a priori information.
� 2018 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

The ability to automatically generate three-dimensional (3D)
urban façade models from point clouds has gained considerable
importance across many fields including autonomous navigation
(Zhang et al., 2016), vegetation management (Höfle et al., 2012),
virtual reality creation (Bui et al., 2016) and environmental mod-
elling (Singh and Laefer, 2015). Light Detection and Ranging
(LiDAR) is a common remote sensing technology used to generate
the point clouds that serve as input data sets for such models, as
the technology has the ability to collect millions of points rapidly
as x-, y- and z-positional coordinates. However, processing such
a point cloud into a usable 3D solid model for computational anal-
ysis (Hinks et al., 2013) or Building Information Modelling (Laefer
and Truong-Hong, 2017) continues to pose significant challenges
and has largely been done only with individual facades. This is
especially true, if the building includes non-rectilinear features
(e.g. curved windows) and complex geometric elements (e.g.
cornices).

Automated, 3D building model generation is highly relevant to
many civil engineering applications, since, the vast majority of
existing urban structures lack measured drawings, and the cost
of producing them through traditional surveying methods is pro-
hibitive when more than a handful of structures are involved
(Laefer, 2016). While LiDAR offers a rapid and cost-effective alter-
native solution for documenting the external geometries of exist-
ing structures, the raw data are only positional in nature. Thus,
an automated means for segmentation and feature extraction is
required for further application-oriented usage. There are also
the additional requirements of the final output needing to be both
geometrically accurate and in a file format compatible with the
selected modelling software (e.g. for finite element modelling in
civil engineering). To automatically generate such models, the
overall boundaries of each building must be established, and the
opening areas across the façade must be located. These two issues
are particularly challenging if: (1) a façade has protrusions; (2)
there are non-rectilinear windows; (3) the roof-level features
intersect non-orthogonally with the roof; (4) the use application
requires multiple façades to be modelled; (5) the data set is very
large; and/or (6) there is a desire to use the model for multiple
domains. Finally, for any solution to be viable at a city-scale, it
must be both scalable and robust. As will be discussed in the next
section, most current approaches struggle with these issues.

This paper is organized as follows. Section 2 describes related
work in for point cloud segmentation and feature extraction.
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Section 3 describes the theoretical framework for the study and
develops the methodological pipeline. Section 4 tests the proposed
method on two highly complex building and shows the experi-
mental results. Then a comparative analysis is run to benchmarks
the proposed method against a highly cited new technique. Subse-
quently, Section 5 presents a sensitivity analysis and discusses the
influence of average density and other variables on the results. Sec-
tion 6 expresses the conclusions drawn from the experimental
results and the comparative analysis.

2. Related works

A raw LiDAR point cloud begins as an unclassified group of
points. They are often massive in size [e.g. more than a billion
points per square kilometre (Laefer et al., 2017)]. Arguably what
is needed for 3D reconstructions for engineering-based applica-
tions is some form of segmentation followed by feature extraction.
While, the concepts of building segmentation and feature extrac-
tion are relatively similar, as both processes aim to find relation-
ships among the points, they are distinctive activities. Thus, this
paper considers these two concepts separately by defining seg-
mentation as the process of clustering a group of points belonging
to a single surface or region at a building scale (e.g. a single build-
ing façade), while feature extraction is herein defined as identify-
ing specific, smaller building features (e.g. chimneys and
windows) typically from previously segmented patches.

2.1. Segmentation

Segmentation is often used to help classify portions of a point
cloud. The action uses one or more criteria to group points into
subsets (e.g. points belonging to the same plane, having a similar
density, or being in a particular orientation). As described in the
following paragraphs, three important strategies have been com-
monly adopted for this step: (a) geometric fitting; (b) region grow-
ing; and (c) clustering.

Geometric fitting-based approaches mostly use variants of the
Random Sample Consensus (RANSAC) methods, as initially intro-
duced by Fischler and Bolles (1981), to segment building façades
by fitting planes or lines into denser point cloud areas (e.g. com-
monly seen with walls). As an example, Schnabel et al. (2007)
employed RANSAC to fit several candidate shapes into the point
cloud. For that purpose, an approximate surface normal for each
point was computed, and then the number of compatible points
for the candidate shape as a standard score function was counted.
Although the method can detect the approximate shape of the
scanned 3D object, even in the presence of up to 50% outliers,
the shapes are strictly limited (i.e. planes, spheres, cylinders, cones
and tori). Thus, the technique would not able to detect the shape of
free-form objects. Boulaassal et al. (2009) used the fitting-based
approach to extract planar clusters contours. RANSAC has been
widely used in this capacity for more than a decade (e.g. Bendels
et al., 2006; Awwad et al., 2010), as it is simple and applicable to
many building styles and types. Yang and Förstner (2010), also
applied a RANSAC-based algorithm integrated with a minimum
description length to manually define the number of fitted planes
in a point cloud. A limitation of RANSAC-based methods is that a
tolerance threshold for the distance between the fitting plane
and the searching points is always required. Defining this thresh-
old value causes the methods to be case dependent. Another geo-
metric fitting-based method is the Hough Transform (Hough
1962), which was introduced to recognise lines in images. Later
this method was extended into 3D to identify positions of arbitrary
planes (Maas and Vosselman, 1999; Vosselman and Dijkman,
2001), cylinders (Tarsha-Kurdi et al., 2007), and spheres (Rabbani

and Van Den Heuvel (2005)). These methods extract surfaces with
a relatively high level of success, as long as significant protrusions
or intricate details are not part of a building’s exterior architecture.

Region-growing is another common approach. This method
divides the point cloud into large surface patches by grouping adja-
cent points or voxels (3D cells). Then, coarse groups identified with
similar normal vectors or other residual values (e.g. distance to
neighbours) can be refined. Next, the method considers only the
points inside those groups/voxels that are related to a common
feature (e.g. normal vector directions) and merges them as a seg-
mented part. An early example employing region-growing was
conducted by Woo et al. (2002) to simplify a larger dataset into
smaller voxels via an octree-based method. The result generated
a 3D surface for the target object by calculating all normal vectors.
The neighbour voxels were then merged into leaf nodes as seed
cells, and then these seeds were grown until the deviation of the
voxels’ normal vectors were less than the threshold. While the
result can correctly estimate the surface of objects from a point
cloud, the method needs two manually-assigned thresholds: voxel
size and standard deviation of the voxels’ normal vectors. The pro-
cess of calculating normal vectors for all cells and other additional
checks can be computationally expensive. To accelerate the proce-
dure, Vo et al. (2015) introduced an octree-based algorithm that
quickly extracts different planes of a building’s façades from both
Terrestrial Laser Scanning (TLS) and Aerial Laser Scanning (ALS)
data. However, the scalability of that method has yet to be estab-
lished. In general, while region-growing has been used widely in
many state-of-the-art segmentation works (e.g. Deschaud and
Goulette, 2010; Wang and Tseng, 2011; Nurunnabi et al., 2012),
use of the approach always depends on at least one predefined cri-
terion, which challenges its robustness as a universal solution.

Clustering is another major segmentation strategy. Clustering is
the process of grouping points with similar feature vectors into a
single cluster separate from points with dissimilar feature vectors.
The method has been an integral part of many algorithms [e.g.
Hierarchical Clustering (Pauly et al., 2002), the k-means algorithm
(Shi et al., 2011), the fuzzy C-means algorithm (Lerma and Biosca,
2005; Biosca and Lerma, 2008)]. For example, Filin and Pfeifer
(2006) performed a cluster analysis in a feature space for ALS data.
For that, they employed a slope adaptive neighbourhood method
that is based on a distance criterion and the geometrical content
of the point cloud to detect the planar surfaces in the dataset.
The method could successfully segment the coarse planes (e.g.
roofs and ground plane around the building) from the airborne
data, however, it is limited to segmenting only planar shapes.

Although the clustering method is similar to region growing
and both are based on grouping points under common constraints,
one of the major advantages of clustering over the region growing
method is that no seed point(s) or regions are needed to initiate the
characterization or grouping. Another benefit is that, unlike fitting-
based methods, clustering can segment multi-planar and 3D
façades. However, clustering is computationally expensive for 3D
data sets and highly influenced by data density and quality,
because the method must determine whether or not each point
satisfies the clustering criteria. In addition, the approach may fail
to properly segment edges, as edge points may meet the require-
ments of more than one cluster, especially if the criteria are based
on point density or point distribution (e.g. Aljumaily et al., 2015;
Aljumaily et al., 2017).

2.2. Feature extraction

After coarsely segmenting a building’s façade planes and roof(s),
feature extraction is typically needed for generating sufficiently
detailed solid models. Recent contributions in the area mostly
focus on detecting different opening areas (i.e. windows and door)
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