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a b s t r a c t

When classifying point clouds, a large amount of time is devoted to the process of engineering a reliable
set of features which are then passed to a classifier of choice. Generally, such features – usually derived
from the 3D-covariance matrix – are computed using the surrounding neighborhood of points. While
these features capture local information, the process is usually time-consuming and requires the appli-
cation at multiple scales combined with contextual methods in order to adequately describe the diversity
of objects within a scene. In this paper we present a novel 1D-fully convolutional network that consumes
terrain-normalized points directly with the corresponding spectral data (if available) to generate point-
wise labeling while implicitly learning contextual features in an end-to-end fashion. This unique
approach allows us to operate on unordered point sets with varying densities, without relying on expen-
sive hand-crafted features; thus reducing the time needed for testing by an order of magnitude over
existing approaches. Our method uses only the 3D-coordinates and three corresponding spectral features
for each point. Spectral features may either be extracted from 2D-georeferenced images, as shown here
for Light Detection and Ranging (LiDAR) point clouds, or extracted directly for passive-derived point
clouds, i.e. from multiple-view imagery. We train our network by splitting the data into square regions
and use a pooling layer that respects the permutation-invariance of the input points. Evaluated using
the ISPRS 3D Semantic Labeling Contest, our method scored second place with an overall accuracy of
81.6%. We ranked third place with a mean F1-score of 63.32%, surpassing the F1-score of the method with
highest accuracy by 1.69%. In addition to labeling 3D-point clouds, we also show that our method can be
easily extended to 2D-semantic segmentation tasks, with promising initial results.
� 2018 The Authors. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and
Remote Sensing, Inc. (ISPRS). This is an open access article under the CC BY-NC-ND license (http://creati-

vecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The past decade of computer/machine vision research and
remote sensing hardware development has broadened the avail-
ability of 3D point cloud data through innovations in Light Detec-
tion and Ranging (LiDAR), Synthetic Aperture Radar (SAR), dense
stereo- or multiview-photogrammetry and structure from motion
(SfM). Despite the prevalence of 3D-point cloud data, automated
interpretation and knowledge discovery from 3D-data remains
challenging due to the irregular structure of raw point clouds. As
such, exploitation has typically been limited to simple visualiza-
tion and basic mensuration (Hackel et al., 2016). Or, some authors
rasterized the point cloud onto a more tracTable 2.5D- Digital Sur-

face Model (DSM) fromwhich conventional image processing tech-
niques are applied, e.g. (Hug and Wehr, 1997; Haala et al., 1998).

In order to generate exploitation-ready data products directly
from the point cloud, semantic classification is desired. Similar to
per-pixel image labeling, 3D-semantic labeling seeks to attribute
a semantic classification label to each 3D-point. Classification
labels, e.g. vegetation, building, road, etc., can subsequently be
used to inform derivative processing efforts such as surface fitting
(Xing et al., 2017), 3D modeling (Moussa and El-Sheimy, 2010),
object detection (Jochem et al., 2009), and bare-earth extraction
(Yunfei et al., 2008). However, the task of labeling every data point
in the irregularly distributed point cloud captured by aerial plat-
forms is challenging, especially in urban scenes with different
object types and various scales ranging from very small spatial
neighborhoods (power lines) to very large spatial neighborhoods
(buildings). Moreover, point clouds are unstructured and unor-
dered data with variable spatial densities. In order to scale the
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semantic classification task to meet the demands of emerging data
volumes potentially at sub-meter resolution and global in coverage
an efficient, streamlined, and robust model that directly operates
on 3D point clouds is needed. The goal of this research is to intro-
duce a flexible and simple multi-scale deep learning framework for
direct semantic labeling of 3D aerial point clouds, thus eliminating
the need for calculating costly, handcrafted features. The algorithm
respects the permutation-invariance of input points and therefore
avoids the need to transform the points to images or volumes.

2. Related work

Point cloud labeling algorithms can generally be grouped into
two main categories. Section 2.1 describes ‘‘Direct Methods”,
which operate immediately on the point clouds themselves and
do not change the 3D-nature of the data. Section 2.2 describes
‘‘Indirect Methods”, which transform the input point cloud into
an image or a volume as a preconditioning step to more traditional
(raster-based) segmentation approaches. Considering the relative
trade-offs of these techniques, Section 2.3 proposes a novel
approach with 7 specific contributions for semantic classification
of point clouds.

2.1. Direct methods

Direct methods assign semantic labels to each element in the
point cloud based on a simple point-wise discriminative model
operating on point features. Such features, known as ‘‘eigen-
features”, are derived from the covariance matrix of a local neigh-
borhood and provide information on the local geometry of the
sampled surface, e.g. planarity, sphericity, linearity (Lin et al.,
2014a). To improve classification, contextual information can
explicitly be incorporated into the model. For example, Blomley
et al. (2016) used covariance features at multiple scales found
using the eigenentropy-based scale selection method (Weinmann
et al., 2014) and evaluated four different classifiers using the ISPRS
3D Semantic Labeling Contest.1 Their best-performing model used a
Linear Discriminant Analysis (LDA) classifier in conjunction with
various local geometric features. However, scalability of this model
was limited due to the dependence upon various handcrafted fea-
tures and the need to experiment with various models that don’t
incorporate contextual features and require effort to tune.

Motivated by the frequent availability of coincident 3D data and
optical imagery, Ramiya et al. (2014) proposed the use of point
coordinates and spectral data directly, forming a per-point vector
of (X, Y, Z, R, G, B) components. Labeling was achieved by filtering
the scene into ground and non-ground points according to
Axelsson (2000), then applying a 3D-region-growing segmentation
to both sets to generate object proposals. Like Blomley et al. (2016),
several geometric features were also derived, although specific
details were not published. Without incorporating contextual fea-
tures, each proposed segment was then classified according to the
five classes from the ISPRS 3D Semantic Labeling Contest.

Alternatively, Mallet (2010) classified full-waveform LiDAR data
using a point-wise multiclass support vector machine (SVM). And
(Chehata et al., 2009) used random forests (RF) for feature detec-
tion and classification of urban scenes collected by airborne LiDAR.
The reader is referred to Grilli et al. (2017) for a more complete
review of discriminative classification models. While simple dis-
criminative models are well-established, they are unable to con-
sider interactions between 3D points.

To allow for spatial dependencies between object classes by
considering labels of the local neighborhood, Niemeyer et al.

(2014) proposed a contextual classification method based on Con-
ditional Random Field (CRF). A linear and a random forest model
were compared when used for both the unary and the pairwise
potentials. By considering complex interactions between points,
promising results were achieved, despite the added cost of compu-
tation speed: 3.4 min for testing using an RF model, and 81 min
using the linear model. This computation time excludes the addi-
tional time needed to estimate the per-point, 131-dimensional fea-
ture vector prior to testing.

This contextual classification model was later extended to use a
two-layer, hierarchical, high-order CRF, which incorporates spatial
and semantic context (Niemeyer et al., 2016). The first layer oper-
ates on the point level, utilizing higher-order cliques and geometric
features (Weinmann et al., 2014) to generate segments. The second
layer operates on the generated segments, and therefore incorpo-
rates a larger spatial scale. Features included geometric- and
intensity-based descriptors, in addition to distance and orientation
to road features (Golovinskiy et al., 2009). By iteratively propagat-
ing context between layers, incorrect classifications can be revised
at later stages; this resulted in good performance on a 2.25 million
point dataset of Hannover, Germany. However, this method
employed multiple algorithms, each designed separately, which
would make simultaneously optimization challenging. Also, the
use of computationally-intensive inference methods limits the
run-time performance. In contrast to relying on multiple
individually-trained components, an end-to-end learning mecha-
nism is desired.

2.2. Indirect methods

Indirect methods – which mostly rely on deep learning – offer
the potential to learn local and global features in a streamlined,
end-to-end fashion (Yosinski et al., 2015). Driven by the reintro-
duction and improvement of Convolutional Neural Networks
(CNNs) (LeCun et al., 1989; He et al., 2016), the availability of
large-scale datasets (Deng et al., 2009), and the affordability of
high-performance computing resources such as graphics process-
ing units (GPUs), deep learning has enjoyed unprecedented popu-
larity in recent years. This success in computer vision domains
such as image labeling (Krizhevsky et al., 2012), object detection
(Girshick et al., 2014), semantic segmentation (Badrinarayanan
et al., 2017; Long et al., 2015), and target tracking (Wang and
Yeung, 2013; Yousefhussien et al., 2016), has generated an interest
in applying these frameworks for 3D classification.

However, the nonuniform and irregular nature of 3D-point
clouds prevents a straightforward extension of 2D-CNNs, which
were originally designed for raster imagery. Hence, initial deep
learning approaches have relied on transforming the 3D data into
more tracTable 2D images. For example, Su et al. (2015) rendered
multiple synthetic ‘‘views” by placing a virtual camera around
the 3D object. Rendered views were passed though replicas of
the trained CNN, aggregated using a view-pooling layer, and then
passed to another CNN to learn classification labels. Several other
methods use the multiview approach with various modifications
to the rendered views. For example, Bai et al. (2016) generated
depth images as the 2D views, while other methods accumulated
a unique signature from multiple view features. Still other meth-
ods projected the 3D information into 36 channels, modifying
AlexNet (Krizhevsky et al., 2012) to handle such input. For further
details, the reader is referred to (Savva et al., 2016).

Similar multiview approaches have also been applied to
ground-based LiDAR point clouds. For example, Boulch et al.
(2017) generated a mesh from the Semantic3D Large-scale Point
Cloud Classification Benchmark (Hackel et al., 2017); this allowed
for the generation of synthetic 2D views based on both RGB
information and a 3-channel depth composite. A two-stream Seg-1 https://goo.gl/fSK6Fy.
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