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a b s t r a c t

With the development of hardwares such as mobile devices and portable depth cameras, on-line 3D
reconstruction on the mobile devices with depth streams as input turns to be possible and promising.
Most existing systems use volumetric representation methods to fuse the depth images and use ICP algo-
rithm to estimate the poses of cameras. However, ICP tracker suffers from large drift in scenes containing
insufficient geometric information. To deal with this problem, we propose a stability based sampling
method which select different number of point-pairs in different windows according to their geometric
stability. In addition, we fuse the ICP tracker with the IMU information through an analysis of the condi-
tion number. Then we apply the stability based sampling method to the spatially hashed volumetric rep-
resentation. Qualitative and quantitative evaluations of tracking accuracy and 3D reconstruction results
show that our method outperforms the current state-of-the-art systems, especially in scenes lacking suf-
ficient geometric information. In total, our method achieves frame rates 20 Hz on an Apple iPad Air 2 and
200 Hz on a Nvidia GeForce GTX 1060 GPU.
� 2018 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Visual simultaneous localization and mapping (V-SLAM) aims
to simultaneously estimate the motion of a robot or a camera
and to reconstruct the geometric structure of the unknown envi-
ronment that the device is observing. It is proposed in the robot
domain initially and then used as a key technique in both the
robotics and augmented reality (AR). After years of research,
some V-SLAM techniques such as feature-based V-SLAM tend
to be mature (Mur-Artal et al., 2015; Klein and Murray, 2007).
While these methods only construct a sparse representation of
the environment, high-resolution dense mapping needs to be
further studied. Dense mapping aims to obtain a high quality
3D reconstruction of the scenes. With the popularity of mobile
devices such as mobile phones and tablet computers, estimation
of the motion and 3D reconstruction of the environment using a
mobile device turn to be promising in the future. Dense on-line
reconstruction of indoor scenes on mobile devices opens up
many useful applications including 3D scanning of interesting

objects and AR. However, mobile devices have limited computa-
tional resources, which makes on-line and realistic 3D recon-
struction on mobile devices remain an unsolved problem. For
this reason, this work aims at on-line 3D reconstruction on
mobile devices.

Many recent systems have been put forward to obtain real-time
3D reconstruction. 3D reconstruction with monocular cameras
needs to recover depth information passively, which suffers from
high computational complexity. Besides, the calculated depth
images are quite noisy especially in regions with weak color tex-
ture. The consuming-level depth cameras as the Microsoft Kinect
(Microsoft, 2010) enable consumers to obtain depth information
actively. KinectFusion (Newcombe et al., 2011; Izadi et al., 2011)
fuses depth images into the volumetric representations (Curless
and Levoy, 1996), which proves to be a powerful method for gen-
erating dense, realistic 3D models. Thanks to its computational
efficiency and algorithmic simplicity, the volumetric representa-
tion method has been reimplemented lots of times and leads to a
wide range of further researches. Recently, devices such as Google
Tango (Google, 2014) and Occipital Structure Sensor (Occipital,
2014) make 3D reconstruction on mobile devices practicable.
Due to the convenience of capturing depth images and the con-
cerns on geometric structure of the environment, we use the depth
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streams as the input to reconstruct geometric models of indoor
scenes in this work.

In this paper, we introduce a geometrically stable tracking and
dense mapping method which can perform 3D scanning at a speed
of up to 20 Hz on an Apple iPad Air 2 and 200 Hz on a Nvidia
GeForce GTX 1060 GPU. One of our contributions is to apply a sta-
bility based sampling method to the iterative closest point (ICP)
algorithm (Besl et al., 1992; Blais and Levine, 1995; Chen and
Medioni, 1991). Through extensive experiments we demonstrate
that our method is of higher accuracy, especially in scenes with
less geometric features compared to the current state-of-the-art
methods. Our second contribution lies in the fusion of ICP tracker
with inertial measurement unit (IMU) information through an
analysis of the condition number. The third contribution is that
we build uncertainty maps of the depth images captured by an
Occipital Structure Sensor and use them to adaptively determine
truncation distances during volumetric integration.

1.1. Related works

With the popularity of inexpensive depth cameras, Newcombe
et al. propose a dense 3D reconstruction framework named Kinect-
Fusion (Newcombe et al., 2011; Izadi et al., 2011), which opens up
an era of high-quality and real-time 3D reconstruction. KinectFu-
sion makes use of a volumetric data (Curless and Levoy, 1996) to
represent the scenes. A truncated signed distance function (TSDF)
value and its weight are stored in every voxel of the volume. The
TSDF value is the distance between the center of a voxel and the
nearest surface of the observed object. Camera poses are deter-
mined by a frame-to-model ICP method, which is followed by a
simple weighted running average (Curless and Levoy, 1996) to fuse
the incoming depth images into the volumetric data. The surface is
encoded into an implicit function and the surface mesh is extracted
by marching cubes (MC) algorithm (Lorensen and Cline, 1987).

Though KinectFusion has many advantages such as its compu-
tational efficiency and algorithmic simplicity, it has some disad-
vantages of the representation method and the tracking method.
For the representation method: the 3D reconstruction lacks scala-
bility because the volume is predefined; the occupied memory
increases with the entire space rather than with the surface area;
the voxels are uniformly divided, which cannot satisfy the multi-
resolution representation of the scenes. For the tracking method:
the effectiveness of ICP algorithm depends on the richness of geo-
metric features; due to error accumulation the loop cannot be
closed.

Various methods have been put forward to overcome these dis-
advantages. Many researchers propose the moving volume method
(Roth and Vona, 2012; Whelan et al., 2015a). Voxels in the field of
view are stored and processed in the device memory, while other
voxels are turned into meshes and transferred to the long-term
memory. This procedure is irreversible and lossy. Other methods
aim to allocate and update the voxels around the actual surface
(Zeng et al., 2013; Chen et al., 2013; Steinbrücker et al., 2014;
Nießner et al., 2013; Kähler et al., 2015, 2016b). Octrees (Zeng
et al., 2013; Chen et al., 2013; Steinbrücker et al., 2014) and hash
tables (Nießner et al., 2013; Kähler et al., 2015, 2016b) are applied
to retrieve the allocated voxels. These methods reduce computa-
tional cost and spare memory occupation. In order to represent
the scene at multi-resolution, Henry et al. propose a patch volumes
method which divides the entire scene into several volume blocks
of various size and resolution (Henry et al., 2013). These volumes
are aligned with dominant planes. Kähler et al. propose a hierarchi-
cal voxel block hashing method (Kähler et al., 2016a). This method
is able to represent the observed space using higher resolution for
parts which require more detailed representation. In consideration

of limited computational resources, we use the voxel hashing
method to retrieve the allocated voxels in our system.

In order to reduce accumulated error, some researchers try
to utilize other kinds of sensors such as RGB cameras and
IMUs. Fovis is based on the sparse features in the RGB images
and the tracking result is affected by the abundance of color-
texture (Huang et al., 2011). Dense Visual Odometry (DVO)
uses depth information and RGB information simultaneously
to obtain camera pose (Steinbrücker et al., 2011), which is
appropriate for those cases with small relative poses. Whelan
fuses the Fovis, DVO and ICP tracking methods altogether to
lessen the dependence on color-textures and geometric fea-
tures (Whelan et al., 2013). Nießner et al. use the integration
of angular velocity as the initialization of rotational compo-
nents in ICP algorithm (Nießner et al., 2014). Tanskanen
et al. fuse the IMU measurements and vision measurements
with Extended Kalman Filter (EKF) (Tanskanen et al., 2015).
Li and Mourikis propose MSCKF to fuse multi-sensor measure-
ments (Li and Mourikis, 2013). In our system we use the inte-
gration of angular velocity as the initialization of rotational
components for ICP.

Based on the above methods, some systems aim to achieve the
goal of 3D reconstruction on mobile devices using RGB-D images
and IMU information. Kähler et al. introduce a system named Infi-
niTAM which integrates depth images at very high frame rates
(Kähler et al., 2015, 2016b). They make substantial improvements
on the voxel hashing method (Nießner et al., 2013) and achieve a
rate of up to 20 Hz when processing IMU augmented 320� 240
depth images on Apple iPad Air 2. However, InfiniTAM suffers from
large drift if the depth images contain insufficient geometric fea-
tures. Klingensmith et al. propose CHISEL which enables house-
scale dense 3D reconstruction on a Google Tango (Klingensmith
et al., 2015). They use the voxel hashing to represent the scene
and combine visual-inertial odometry (VIO) with ICP to track the
camera.

1.2. System outline

In accordance with what is widely used in previous works, we
use the volumetric representation method to integrate depth
images. Our system is composed of four main units as what is pro-
posed in KinectFusion, which is shown in Fig. 2.

(a) Preprocessing:When a depth image is input, a dense vertex
map and a normal map in the camera coordinate system are
generated. Additionally, an uncertainty map representing the
standard deviation (STD) of the depth noise and a gradient
map used to determine the depth discontinuities are calculated
as well.
(b) Camera Tracking: We register the input depth image and
the ray-casted depth image from the proceeding camera pose
through the well-known ICP algorithm to get a 6-DoF rigid rel-
ative transformation between them. If IMU is available, we fuse
ICP tracker with IMU information.
(c) Volumetric Integration: After estimating the camera’s glo-
bal pose, depth images are integrated into a TSDF model
through running average. The truncation distance is adaptive
according to the noise level of measured depth.
(d) Surface Prediction: Ray-casting the volumetric model into
a predicted surface is the final unit. This predicted surface is
aligned with the live depth image in the tracking stage and pro-
vided to the user for visualization.

Each of the above units is elaborate in the following sections. One
example of our reconstruction result on the real-world scene is
shown in Fig. 1
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