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A B S T R A C T

Detection of objects from satellite optical remote sensing images is very important for many commercial and
governmental applications. With the development of deep convolutional neural networks (deep CNNs), the field
of object detection has seen tremendous advances. Currently, objects in satellite remote sensing images can be
detected using deep CNNs. In general, optical remote sensing images contain many dense and small objects, and
the use of the original Faster Regional CNN framework does not yield a suitably high precision. Therefore, after
careful analysis we adopt dense convoluted networks, a multi-scale representation and various combinations of
improvement schemes to enhance the structure of the base VGG16-Net for improving the precision. We propose
an approach to reduce the test-time (detection time) and memory requirements. To validate the effectiveness of
our approach, we perform experiments using satellite remote sensing image datasets of aircraft and automobiles.
The results show that the improved network structure can detect objects in satellite optical remote sensing
images more accurately and efficiently.

1. Introduction

With the development of remote sensing technology, the resolution
of optical remote sensing images has greatly improved and images have
become largely available. Compared with other types of images, remote
sensing images provide more details and a clearer texture. Thus, object
detection using optical remote sensing images offers many advantages.
Firstly, optical remote sensing images can be used to detect “radar
stealth” objects that use surface coatings and special structures.
Secondly, optical remote sensing images can provide more favorable
features for detection (Cheng and Han, 2016). In the international
classification competition in 2012, researchers used deep convolution
neural networks (deep CNNs) to classify objects, and the precision of
their approach was significantly higher than those of other methods
(Guo et al., 2016). In this context, deep learning (Chen and Lin, 2014;
Salakhutdinov, 2014), particularly deep CNN (LeCun et al., 2015;
Schmidhuber, 2015) processing, has been applied in several fields
ranging from object detection (Alshehhi et al., 2017; Fytsilis et al.,
2016) to object classification (Paoletti et al., 2017; Szegedy et al., 2015;
Zeiler and Fergus, 2013; Zhang et al., 2017) and tracking (Cui et al.,
2016; Wang and Yeung, 2013). Different methods of reducing the

network training complexity and overfitting have been presented.
These include initialization from the original random distribution to
those of Gauss and Xavier (Glorot and Bengio, 2010), as well as at-
tempts to reduce the difficulty of training decline and improve con-
vergence. Moreover, the BN (Ioffe and Szegedy, 2015) approach has
been demonstrated to not only reduce training difficulty, but also the
possibility of overfitting. The rectified linear unit (ReLU) and para-
metric ReLU (PReLU) (Glorot et al., 2011; Goodfellow et al., 2013; He
et al., 2015c; Kim et al., 2015; Pan and Srikumar, 2015) activation
functions have replaced the original sigmoid and tanh activation
functions, and since these functions more closely resemble human
biological activation, the precision of the results is greatly enhanced. In
addition, the use of the dropout technique (Baldi and Sadowski, 2013;
Srivastava et al., 2014) has added to the success of the deep CNN ap-
proach.

In this context we adopt in our study deep CNNs to detect objects
(airplanes and automobiles) in our data sets. There are several frame-
works in object detection based on deep CNNs, like Regions with CNN
features (RCNN) (Girshick et al., 2014), Fast Region-based Convolu-
tional Network (Fast RCNN) (Redmon et al., 2015), and others (Kabani
and Elsakka, 2016; Sermanet et al., 2013; Zitnick and Dollar, 2014).

https://doi.org/10.1016/j.isprsjprs.2018.05.005
Received 24 June 2017; Received in revised form 13 March 2018; Accepted 8 May 2018

⁎ Corresponding author at: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.
E-mail address: dingpeng14@mails.ucas.ac.cn (P. Ding).

ISPRS Journal of Photogrammetry and Remote Sensing 141 (2018) 208–218

0924-2716/ © 2018 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09242716
https://www.elsevier.com/locate/isprsjprs
https://doi.org/10.1016/j.isprsjprs.2018.05.005
https://doi.org/10.1016/j.isprsjprs.2018.05.005
mailto:dingpeng14@mails.ucas.ac.cn
https://doi.org/10.1016/j.isprsjprs.2018.05.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2018.05.005&domain=pdf


Among these frameworks, the Faster RCNN approach affords suitable
precision for real-time object detection (Ren et al., 2016). In the field of
remote sensing, many researchers have focused on airplane detection
using deep CNNs. Some of them have designed their own frameworks.
Wu et al. (2015) proposed the BING approach in combination with a
CNN to perform aircraft detection. However, the average detection time
(or test time) for test images with this approach is about 6.414 s. In
addition, the precision is not that high. Along similar lines, Cao et al.
(2016) performed airplane detection by means of RCNN, which is
thought to perform poorer than Faster RCNN in terms of both precision
and speed. Zhang et al. (2016) performed aircraft detection by using
weakly supervised CNNs. This approach is similar to the RPN+Fast
RCNN (Faster RCNN without feature sharing) approach.

In the field of remote sensing, many researchers have also per-
formed vehicle detection using deep CNNs. Ammour et al. performed
car detection by combining CNNs and support vector machines (SVMs),
similar to the RCNN approach (Ammour et al., 2017). Tang et al. per-
formed vehicle detection by using RCNNs and Hard Negative Example
Mining (Tang et al., 2017), which is an improvement on the Faster
RCNN. They performed vehicle detection by adapting ZF-Net as the
baseline and using the RealBoost algorithm to replace the Fast RCNN.

Our work is different from these approaches, since we adopt a more
advanced framework, the Faster RCNN (Ren et al., 2016) framework,
and choose the VGG16 network (Simonyan and Zisserman, 2015), a
very deep CNN network, as the base network to detect objects. So Faster
RCNN forms the holistic framework and VGG16-Net is the base network
used in this framework. To improve the precision and recall of the tests,
we adopt specific measures to strengthen the capability of VGG16-Net.
Since the computational cost is a major problem that restricts Faster
RCNN applications, we propose the use of a fully convolutional neural
network instead of the fully connected layers in the Faster RCNN fra-
mework. Through this approach, the memory requirements of the final
model become significantly smaller. The test-time also reduces con-
siderably. Moreover, the precision of the approach is still able to meet
our requirements.

The main contributions of this paper are thus as follows:

1. 1 For the detection of dense objects in optical remote sensing
images, we adopt dilated convolutions instead of traditional con-
volutions to improve precision.

2. As certain objects in satellite remote sensing images are small and
difficult to detect, we adopt a bootstrapping strategy called Online
Hard Example Mining (Shrivastava et al., 2016) for mining hard
negative examples, and we add it to Faster RCNN.

3. We use a multi-scale representation and its combinations in a new
manner.

4. We propose a fully convolutional neural network instead of the fully
connected layers in the Faster RCNN framework.

5. The object detection accuracy and recall show significant improve-
ment with our approach.

The rest of the paper is organized as follows: In the next section, we
describe the basic principles of CNNs and the development and prin-
ciples of Faster RCNN. The details of our method are explained in
Section 3. Our analysis and comparison of experimental results are
presented in Section 4. Finally, Section 5 concludes the paper.

2. Related work

2.1. Principles of convolutional neural networks

Traditional CNNs are composed of multiple stages, with each stage
consisting of a convolution layer, a feature pooling layer, and a fully
connected (FC) layer (Krogh and Hertz, 1992; Lecun et al., 1998).

Convolution layers: At the convolution layer, the previous layer’s
feature maps −Xi

l 1 are convolved with learnable kernelskij
l , a trainable

bias parameterbj is added and the result is processed by the activation
function f (·) to form the output feature map. This process can be ex-
pressed as:
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Here, Mj represents a selection of input maps. In this work, we chose
ReLU, which is called the rectifier activation function, as the activation
function in the new layers since it works better than the logistic sigmoid
and hyperbolic tangent functions (Glorot et al., 2011).

Feature pooling layer: This layer treats each feature map sepa-
rately. In general, this layer is called the subsampling layer, and it
produces down-sampled versions of the input maps. This means that the
number of input and output maps is the same, but the output maps are
smaller in size. The results are robust to small variations in the location
of features in the previous layer. This process can be expressed as:

= −X down X( )j
l

j
l 1
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Here, down (·) denotes a down-sampling operation. By means of
down-sampling, we reduce the size of the input by summarizing neu-
rons from a small spatial neighborhood (Scherer et al., 2010).

Fully connected (FC) layers: After data processing by several
convolutional and subsampling layers, high-level reasoning in the
neural network is performed via FC layers. Neurons in an FC layer have
full connections to all activations in the previous layer. Their activa-
tions can hence be computed with a matrix multiplication followed by a
bias offset. The flowchart of a CNN is shown in Fig. 1.

Training is performed by means of the backpropagation algorithm
(Chen et al., 2008) to minimize the aberrations between the ideal
output and the actual output of the CNNs. In general, for the purpose of
detection, a CNN is followed by a classification module.

CONV1
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Classfication

Pool1 CONV2
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Fig. 1. Flowchart of convolutional neural network.
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