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a b s t r a c t

Oblique aerial images offer views of both building roofs and façades, and thus have been recognized as a
potential source to detect severe building damages caused by destructive disaster events such as earth-
quakes. Therefore, they represent an important source of information for first responders or other stake-
holders involved in the post-disaster response process. Several automated methods based on supervised
learning have already been demonstrated for damage detection using oblique airborne images. However,
they often do not generalize well when data from new unseen sites need to be processed, hampering their
practical use. Reasons for this limitation include image and scene characteristics, though the most promi-
nent one relates to the image features being used for training the classifier. Recently features based on
deep learning approaches, such as convolutional neural networks (CNNs), have been shown to be more
effective than conventional hand-crafted features, and have become the state-of-the-art in many
domains, including remote sensing. Moreover, often oblique images are captured with high block overlap,
facilitating the generation of dense 3D point clouds – an ideal source to derive geometric characteristics.
We hypothesized that the use of CNN features, either independently or in combination with 3D point
cloud features, would yield improved performance in damage detection. To this end we used CNN and
3D features, both independently and in combination, using images from manned and unmanned aerial
platforms over several geographic locations that vary significantly in terms of image and scene character-
istics. A multiple-kernel-learning framework, an effective way for integrating features from different
modalities, was used for combining the two sets of features for classification. The results are encouraging:
while CNN features produced an average classification accuracy of about 91%, the integration of 3D point
cloud features led to an additional improvement of about 3% (i.e. an average classification accuracy of
94%). The significance of 3D point cloud features becomes more evident in the model transferability sce-
nario (i.e., training and testing samples from different sites that vary slightly in the aforementioned char-
acteristics), where the integration of CNN and 3D point cloud features significantly improved the model
transferability accuracy up to a maximum of 7% compared with the accuracy achieved by CNN features
alone. Overall, an average accuracy of 85% was achieved for the model transferability scenario across all
experiments. Our main conclusion is that such an approach qualifies for practical use.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction and related works

Automated detection of severe building damages is crucial in
the coordination of fast response actions after any destructive

disaster event such as earthquakes. Remote sensing technology
has been recognized as a suitable source to provide timely data
for automated detection of damaged buildings for larger areas
(Dell’Acqua and Gamba, 2012; Dong and Shan, 2013). In particular,
multi-view oblique images from manned aircraft and unmanned
aerial vehicles (UAV) have been recognized as most suitable
(Fernandez Galarreta et al., 2015; Gerke and Kerle, 2011; Kerle
and Hoffman, 2013). This is because these images capture both
roofs and façades with very high spatial resolution, facilitating a
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holistic and detailed view of the building for damage assessment
(Fernandez Galarreta et al., 2015). Several studies have demon-
strated automated detection of damaged buildings from the above
mentioned image types, where the heavily damaged buildings are
identified by recognizing externally visible damage evidences such
as spalling, debris, rubble piles and broken elements, which are the
strong indicators of severe structural damage (Dong and Shan,
2013; Vetrivel et al., 2015a). These damage evidences alone are
not sufficient to infer the actual damage state of the building, as
it requires additional information such as damages to internal
building elements (e.g., columns and beams), which can rarely be
directly inferred from images. Even though the information that
can be derived from the images is limited, it is typically sufficient
for satisfying the requirements of the stakeholders involved in
search and rescue processes (Dong and Shan, 2013). Furthermore,
the information can be used to plan for subsequent detailed assess-
ments, for example, identifying hotspots that require immediate
attention, and prioritizing the locations for field inspection.
Towards this, numerous automated methods have been proposed
for detection of aforementioned visual damage evidences from
very high resolution images (Dong and Shan, 2013; Ma et al.,
2016). These methods are largely based on two approaches: (1)
comparison of pre- and post-event data, and (2) damage detection
based on mono-temporal post-event data alone. The methods
based on supervised learning strategies have been demonstrated
to be effective for damage detection, particularly for the mono-
temporal approach (Gerke and Kerle, 2011; Vetrivel et al.,
2015a). However, it is still challenging to adopt them for practical
use. This is because the methods based on a supervised learning
approach often do not generalize enough for them to be transferred
to similar remote sensing data from unseen geographic locations,
and Vetrivel et al. (2015a) discussed several reasons. One of the
major factors is the poor generalization capability of the features
and their representation used for constructing the supervised
model, which is briefly described below:

(1) Numerous image features have been examined for damage
detection, and often the texture features such as Histogram
of oriented Gradients (HoG) and Gabor features have been
reported as effective (Samadzadegan and Rastiveisi, 2008;
Tu et al., 2016; Vetrivel et al., 2015a). Apart from feature
selection, the choice of the feature representation strategy
is also crucial, which is evident from the recent study by
Vetrivel et al. (2016b), where the performance of the above
mentioned texture features was found to be improved
when represented using a Visual Bag of Words (BoW)
framework (Ferraz et al., 2014). Though the BoW represen-
tation improved the accuracy, problems related to general-
ization still exist. For example, Vetrivel et al. (2016b)
examined the generalization capability of three different
texture features: speeded up robust features (SURF), HoG
features and Gabor features in a BoW framework for dam-
age detection, using very high resolution images from dif-
ferent geographic locations (e.g., Italy, Haiti, India, etc.).
They reported that the performance of the features is mod-
erately inconsistent for datasets from different places, i.e.
particular features perform better for specific datasets.
The difference between the accuracies produced by these
features for different datasets was reported to be 3–4%.
The same set of features in a similar experimental setting
as reported in Vetrivel et al. (2016b) was examined by Tu
et al. (2016) for another study area for damage detection.
However, they reported contradictory findings: the differ-
ence in accuracy produced by different features was found
to be higher (�10%), though there is no obvious explana-
tion for this difference in results. Thus, identifying the

generalized features for building a supervised classifier for
damage detection is still challenging.

(2) Additionally, all aforementioned features which have been
reported as being efficient for damage detection are based
on gradient orientation distribution patterns. These features
are adopted for the damage detection process based on the
assumption that structurally deformed regions often result
in non-uniform radiometric distributions when compared
to regions of undamaged man-made structural elements.
For example, Fig. 1a depicts the rudimentary gradient orien-
tation pattern derived for damaged and undamaged image
regions. However this assumption often fails in urban areas
possessing complex texture (Vetrivel et al., 2016a). For
example, consider Fig. 1b where the building elements pos-
sess complex textures that look similar to the radiometric
pattern of damaged regions. In such areas, the reported tex-
ture features would fail, thereby hindering the automated
assessment.

Overall, the previously reported features are found to be inade-
quate to create a strong generalized supervised model for damage
detection, and a feature descriptor robust to aforementioned limi-
tations is highly desirable.

Recently, the features from deep learning approaches such as
Convolutional Neural Networks (CNNs) have been reported as
being superior to conventional hand-crafted features, including
the ones used in earlier state-of-the-art BoW framework for image
classification in many applications including remote sensing (Hu
et al., 2015; Karpathy et al., 2014; Sherrah, 2016; Szegedy et al.,
2015; Zhou et al., 2015; Zuo et al., 2014). For example, several par-
ticipants in the ISPRS urban scene classification challenge have
achieved state-of-the-art accuracy for the ISPRS Vaihingen and
Potsdam benchmark data sets using CNN features, outperforming
all previously reported methods based on hand-crafted features
(cf. ISPRS-Benchmark, 2016). Hence, we anticipate that CNN fea-
tures would outperform the hand-crafted features in a damage
detection application as well. This is examined in this paper.

In the real world, man-made structural elements are complex
and they often possess irregular radiometric patterns due to sev-
eral reasons other than damage, including radiometric degradation
of elements due to aging, or presence of dirt (cf. Fig. 2). In such
cases, our assumptions about damaged regions based on image-
radiometric patterns may fail. In this scenario, the use of 3D geo-
metric information could be of help to differentiate between the
unusual radiometric pattern due to geometric deformation (dam-
age) and other reasons. In general, 3D point clouds are an ideal
source to infer geometric characteristics of structural elements.
For example, Khoshelham et al. (2013) demonstrated the potential
of 3D point cloud features derived from post-event LiDAR point
clouds for building damage detection. The oblique-view aerial
images from manned- and unmanned aerial vehicles which have
previously been identified as effective for damage detection are
usually captured with high block overlap, facilitating the genera-
tion of 3D point clouds (Nex and Remondino, 2014). We assume
that the integrated use of 3D features from photogrammetric point
clouds and CNN features from images would yield improved
results. However, it is well known that the direct integration of fea-
tures, i.e. stacking of features from different sources, possibly pos-
sessing different modalities, into a single feature vector for
supervised classification is inefficient (Bucak et al., 2014; Gu
et al., 2015). Alternatively, integrating features from different
sources using a Multiple-Kernel-Learning (MKL) approach associ-
ated with a kernel-based classifier such as SVM has been reported
to be effective and it is being commonly used (Bucak et al., 2014;
Gu et al., 2015). In addition to feature subsets integration, the
MKL also could be used to evaluate the significance of each feature
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