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a b s t r a c t

Up-to-date catalogs of the urban tree population are of importance for municipalities to monitor and
improve quality of life in cities. Despite much research on automation of tree mapping, mainly relying
on dedicated airborne LiDAR or hyperspectral campaigns, tree detection and species recognition is still
mostly done manually in practice. We present a fully automated tree detection and species recognition
pipeline that can process thousands of trees within a few hours using publicly available aerial and street
view images of Google MapsTM. These data provide rich information from different viewpoints and at dif-
ferent scales from global tree shapes to bark textures. Our work-flow is built around a supervised classi-
fication that automatically learns the most discriminative features from thousands of trees and
corresponding, publicly available tree inventory data. In addition, we introduce a change tracker that rec-
ognizes changes of individual trees at city-scale, which is essential to keep an urban tree inventory up-to-
date. The system takes street-level images of the same tree location at two different times and classifies
the type of change (e.g., tree has been removed). Drawing on recent advances in computer vision and
machine learning, we apply convolutional neural networks (CNN) for all classification tasks. We propose
the following pipeline: download all available panoramas and overhead images of an area of interest,
detect trees per image and combine multi-view detections in a probabilistic framework, adding prior
knowledge; recognize fine-grained species of detected trees. In a later, separate module, track trees over
time, detect significant changes and classify the type of change. We believe this is the first work to exploit
publicly available image data for city-scale street tree detection, species recognition and change tracking,
exhaustively over several square kilometers, respectively many thousands of trees. Experiments in the
city of Pasadena, California, USA show that we can detect >70% of the street trees, assign correct species
to >80% for 40 different species, and correctly detect and classify changes in >90% of the cases.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Urban forests in the USA alone contain around 3.8 billion trees
(Nowak et al., 2002). A relatively small but prominent element of
the urban forest are street trees. Street trees grow along public
streets and are managed by cities and counties. The most recent
estimate is that there are 9.1 million trees lining the streets of Cal-
ifornia, about one street tree for every 3.4 people2 living in an urban
area, with an estimated replacement value of $2.5 billion
(McPherson et al., 2016). However, the greatest value of a street tree

is not its replacement value but its ecosystem services value, i.e., all
economic benefits that a tree provides for a community. These ben-
efits include: a reduction in energy use, improvement in air and
water quality, increased carbon capture and storage, increased prop-
erty values and an improvement in individual and community well-
being (Nowak et al., 2002; McPherson et al., 2016).3 Still, inventories
are often lacking or outdated, due to the cost of surveying and mon-
itoring the trees.

We propose an automated, image-based system to build up-to-
date tree inventories at large scale, using publicly available aerial
images and panoramas at street-level. The system automatically
detects trees from multiple views and recognizes their species. It
draws on recent advances in machine learning and computer
vision, in particular deep learning for object recognition
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1 Joint first authorship.
2 A rough estimate for Europe is given in (Pauleit et al., 2005). The number of

people per street tree strongly varies across European cities between 10 to 48
inhabitants per street tree. However, it is unclear (and in fact unlikely) if US and
European census numbers rely on the same definitions.

3 The most recent estimate of the ecosystem services value of the street trees in
California is $1 billion per year or $111 per tree, respectively $29 per inhabitant.
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(Krizhevsky et al., 2012; Szegedy et al., 2015; Simonyan and
Zisserman, 2015; Girshick, 2015; Ren et al., 2015), fine-grained
object categorization (Wah et al., 2011; Angelova and Zhu, 2013;
Branson et al., 2013; Deng et al., 2013; Duan et al., 2013; Krause
et al., 2014; N. Zhang et al., 2014b), and analysis of publicly avail-
able imagery at large scale (Hays and Efros, 2008; Agarwal et al.,
2009; Anguelov et al., 2010; Majdik et al., 2013; Russakovsky
et al., 2015). The method is build around a supervised classification
that uses deep convolutional neural networks (CNN) to learn tree
identification and speies classification from existing inventories.

Our method is motivated by TreeMapLA,4 which aims to build a
publicly available tree inventory for the greater Los Angeles area. Its
goal is to collect and combine already existing tree inventories
acquired by professional arborists. In case no reasonably up-to-
date data is available, which is often the case, a smartphone app is
used to task users in a crowd-sourcing effort to fill in data gaps.
Unfortunately only few people (so-called citizen scientists) partici-
pate. Only a small number of trees, e.g., � 1000 out of more than
80,000 in Pasadena, have been mapped within the last 3 years.
And often entries are incomplete (e.g., missing species, trunk diam-
eter) or inaccurate (e.g., GPS position grossly wrong). It turns out
that determining a tree’s species is often the hardest and most dis-
couraging part for citizen scientists. The average person does not
know many species of tree, and even with tree identification tools,
the prospect of choosing one option among tens or even hundreds
is daunting.

We propose to automate tree detection and species recognition
with the help of publicly available street-level panoramas and very
high-resolution aerial images. The hope is that such a system,
which comes at virtually no cost and enables immediate inventory
generation from scratch, will allowmore cities to gain access to up-
to-date tree inventories. This will help to ascertain the diversity of
the urban forest by identifying tree species determinants of urban
forest management (e.g., if a pest arrives, an entire street could
potentially lose its trees). Another benefit to a homogeneous
inventory across large urban areas would be to fill in the gaps
between neighboring municipalities and different agencies, allow-
ing for more holistic, larger-scale urban forest planning and man-
agement. Each city’s Tree Master Plan would no longer exist in a
vacuum, but account for the fact that the urban forest, in larger
metropolitan areas, spreads out across multiple cities and agencies.

Our systemworks as follows: It first downloads all available aer-
ial images and street view panoramas of a specified region from a
repository, in our example implementation Google Maps. A tree
detector that distinguishes trees from all other scene parts and a
tree species classifier are separately trained on areas where ground
truth is available. Often, a limited, but reasonably recent tree inven-
tory does exist nearby or can be generated, which has similar scene
layout and the same tree species. The trained detector predicts new
trees in all available images, and the detector predictions are pro-
jected from image space to true geographic positions, where all
individual detections are fused. We use a probabilistic conditional
random field (CRF) formulation to combine all detector scores and
add further (learned) priors to make results more robust against
false detections. Finally, we recognize species for all detected trees.
Moreover, we introduce a change classifier that compares images of
individual trees acquired at two different points in time. This allows
for automated updating of tree inventories.

2. Related work

There has been steady flow of research into automated tree
mapping over the last decades. A multitude of works exist and a

full review is beyond the scope of this paper (e.g., see (Larsen
et al., 2011; Kaartinen et al., 2012) for a detailed comparison of
methods).

Tree delineation in forests is usually accomplished with air-
borne LiDAR data (Reitberger et al., 2009; Lähivaara et al., 2014;
J. Zhang et al., 2014) or a combination of LiDAR point clouds and
aerial imagery (Qin et al., 2014; Paris and Bruzzone, 2015). LiDAR
point clouds have the advantage of directly delivering height infor-
mation, which is beneficial to tell apart single tree crowns in dense
forests. On the downside, the acquisition of dense LiDAR point
clouds requires dedicated, expensive flight campaigns. Alterna-
tively, height information can be obtained through multi-view
matching of high-resolution aerial images (Hirschmugl et al.,
2007) but is usually less accurate than LiDAR due to matching arte-
facts over forest.

Only few studies attempt segmentation of individual trees from
a single aerial image. Lafarge et al. (2010) propose marked point
processes (MPP) that fit circles to individual trees. This works quite
well in planned plantations and forest stands with reasonably
well-separated trees. However, MMPs are notoriously brittle and
difficult to tune with inference methods like simulated annealing
or reversible jump Markov Chain Monte Carlo, which are computa-
tionally expensive. Simpler approaches rely on template matching,
hierarchies of heuristic rules, or scale-space analysis (see Larsen
et al. (2011) for a comparison).

Tree detection in cities has gained attention since the early
2000s. Early methods for single tree delineation in cities were
inspired by scale-space theory (initially also developed for forests
by Brandtberg and Walter (1998)). A common strategy is to first
segment data into homogeneous regions, respectively 3D clusters
in point clouds, and then classify regions/clusters into tree or back-
ground, possibly followed by a refinement of the boundaries with
predefined tree shape priors or active contours. For example,
Straub (2003) segments aerial images and height models into con-
sistent regions at multiple scales, then performs refinement with
active contours. Recent work in urban environments (Lafarge and
Mallet, 2012) creates 3D city models from dense aerial LiDAR point
clouds, and reconstructs not only trees but also buildings and the
ground surface. After an initial semantic segmentation with a
breakline-preserving MRF, 3D templates consisting of a cylindrical
trunk and an ellipsoidal crown are fitted to the data points. Simi-
larly, tree trunks have been modeled as cylinders also at smaller
scales but higher resolution, using LiDAR point clouds acquired
either from UAVs (Jaakkola et al., 2010) or from terrestrial mobile
mapping vehicles (Monnier et al., 2012).

We are aware of only one recent approach for urban tree detec-
tion that, like our method, needs neither need height information
nor an infra-red channel. Yang et al. (2009) first roughly classify
aerial RGB images with a CRF into tree candidate regions and back-
ground. Second, single tree templates are matched to candidate
regions and, third, a hierarchical rule set greedily selects best
matches while minimizing overlap of adjacent templates. This
detection approach (tree species recognition is not addressed) is
demonstrated on a limited data set and it remains unclear whether
it will scale to entire cities with strongly varying tree shapes.

Tree species classification from remote sensing data either
uses multi-spectral aerial (Leckie et al., 2005; Waser et al., 2011)
or satellite images (Pu and Landry, 2012), hyperspectral data
(Clark et al., 2005; Roth et al., 2015), dense (full-waveform) LiDAR
point clouds (Brandtberg, 2007; Yao et al., 2012), or a combination
of LiDAR and multispectral images (Heikkinen et al., 2011; Korpela
et al., 2011; Heinzel and Koch, 2012). Methods that rely on full-
waveform LiDAR data exploit species-specific waveforms due to
specific penetration into the canopy, and thus different laser reflec-
tance patterns, of different tree species; whereas hyperspectral
data delivers species-specific spectral patterns. Most works follow4 https://www.opentreemap.org/latreemap/map/
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