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a b s t r a c t

Spectral-spatial classification is known to be an effective way to improve classification performance by
integrating spectral information and spatial cues for hyperspectral imagery. In this paper, a game-
theoretic spectral-spatial classification algorithm (GTA) using a conditional random field (CRF) model
is presented, in which CRF is used to model the image considering the spatial contextual information,
and a cooperative game is designed to obtain the labels. The algorithm establishes a one-to-one corre-
spondence between image classification and game theory. The pixels of the image are considered as
the players, and the labels are considered as the strategies in a game. Similar to the idea of soft classifi-
cation, the uncertainty is considered to build the expected energy model in the first step. The local
expected energy can be quickly calculated, based on a mixed strategy for the pixels, to establish the foun-
dation for a cooperative game. Coalitions can then be formed by the designed merge rule based on the
local expected energy, so that a majority game can be performed to make a coalition decision to obtain
the label of each pixel. The experimental results on three hyperspectral data sets demonstrate the effec-
tiveness of the proposed classification algorithm.
� 2017 Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote

Sensing, Inc. (ISPRS).

1. Introduction

Hyperspectral sensors can record hundreds of narrow spectral
bands from the visible to infrared spectrum, close to the actual
spectrum of the material. Therefore, hyperspectral images with
hundreds of continuous narrow spectral bands are an important
data source for discriminating different objects based on their
spectral differences (Chang, 2003). Hyperspectral image classifica-
tion can be considered as a labeling problem of mapping the prede-
fined semantic labels to each pixel or clique for a hyperspectral
image (Camps-Valls et al., 2014). This is a basic task of many appli-
cations, such as urban planning, precision agriculture, and environ-
mental monitoring. As a result, hyperspectral image classification
has been the subject of a great deal of attention in the last decade.
However, the detailed spectrum results in high dimensionality and
redundancy of spectral bands, which brings difficult processing
problems, such as the high-dimensionality problem, i.e., the

Hughes phenomenon (Hughes, 1968), to hyperspectral image clas-
sification. Therefore, the detailed spectral features of hyperspectral
images do not always help to improve the performance of classifi-
cation in the case of limited training samples.

To alleviate the impact of the Hughes phenomenon, a number of
dimensionality reduction techniques (Plaza et al., 2005;
Kianisarkaleh and Ghassemian, 2016) can be used as a preprocess-
ing step to reduce the dimensionality of the data. In addition, some
classification algorithms have the ability to deal with the problem
of high dimensionality and limited training sets; for example, sup-
port vector machine (SVM) (Melgani and Bruzzone, 2004;
Mountrakis et al., 2011) and multinomial logistic regression
(Böhning, 1992; Krishnapuram et al., 2005). In recent years, sparse
representation (Chen et al., 2011; Xue et al., 2015), which involves
sparsely representing the test pixel by a few atoms of a training
dictionary, and ensemble learning methods (such as random forest
(Belgiu and Drăguţ, 2016) and rotation forest (Xia et al., 2014)),
which involve combining multiple classifiers to obtain a better
classification performance, have also been successfully used in
hyperspectral image classification. These classification approaches
process each pixel independently to assign a label based on its
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spectral information, which always results in a salt-and-pepper
classification appearance in hyperspectral image classification.
Hyperspectral images with a high spatial resolution have become
available in recent years, and can provide rich details and texture
information about semantic objects, alongside detailed spectral
information (Fauvel et al., 2013; Zhong et al., 2016; Wang et al.,
2017), to help in the accurate recognition of land-cover classes.
However, the salt-and-pepper classification phenomenon is a big
problem for hyperspectral images with a high spatial resolution.

In order to improve the performance of classification, the spatial
correlation of the images can be fully used, and there have been a
number of studies that have focused on the spectral-spatial classi-
fication (Fauvel et al., 2013; Han et al., 2017). A typical way to con-
sider the spatial information is an object-oriented classification
method. The object-oriented classification (Blaschke, 2010) meth-
ods take objects as the basic processing unit, so that they intrinsi-
cally provide the spatial information to alleviate the salt-and-
pepper classification noise. The objects correspond to homoge-
neous regions, which can be obtained by segmentation algorithms
such as the mean shift segmentation (MSS) approach (Comaniciu
and Meer, 2002) and the fractal net evolution approach (FNEA)
(Baatz and Schäpe, 2000). Taking objects as the basic unit, direct
classification using the object features can be used to obtain the
class labels. The other way to obtain the classification result is to
use a majority voting strategy (Tarabalka et al., 2010a) within each
object based on pixelwise classification. Therefore, object-oriented
classification can be considered to combine the classification and
segmentation algorithms to achieve the goal of spectral-spatial
classification. However, as the key step in object-oriented classifi-
cation, the segmentation faces the challenge of the selection of the
optimal segmentation scale, as a result of the scale diversity of the
various land-cover types (Johnson and Xie, 2011).

Another useful classification approach considering spatial infor-
mation is the random field approach. As an image labeling prob-
lem, the image classification task can be successfully modeled as
a random field model to capture some of the internal prior infor-
mation of the image, such as the smoothness and local interactions
between pixels. As a widely used random field model, the Markov
random field (MRF) model was first introduced into image analysis
in 1984 (Geman and Geman, 1984), and has since been successfully
applied in various image processing applications (Szeliski et al.,
2008; Chen et al., 2012). For hyperspectral image classification,
the MRF model can be used to consider the spatial information
(Tarabalka et al., 2010b; Jia et al., 2015; Sun et al., 2015). In order
to model the interaction between pixels in a flexible way, both in
the labels and observed data, the conditional random field (CRF)
model, as an improved MRF model, was first applied in image pro-
cessing by Kumar and Hebert (2003) as a discriminative random
field model, after first being proposed to address the labeling of
1-D text sequences by Lafferty et al. (2001) in 2001. In the follow-
ing years, the CRF model has successfully applied in remote sens-
ing image classification (Zhong and Wang, 2010, 2011; Li et al.,
2011, 2013; Zhang and Jia, 2012; Zhong et al., 2014a,b; Zhao
et al., 2015, 2016).

In the last two decades, the CRF framework has become very
popular in many applications, partly due to the appearance of
new, powerful optimization algorithms. The CRF inference prob-
lem of finding the image labeling for an image classification appli-
cation with multiple labels is NP-hard (Li, 2009), so that
approximate optimization algorithms have to be applied. The early
inference methods, such as iterated conditional modes (ICM)
(Besag, 1986) and simulated annealing (Barnard, 1989), often per-
formed poorly with regard to the efficiency or effectiveness aspect
for some applications. For example, as one of the most well-known
early methods for the optimization of random field energy, the ICM
algorithm can be considered as a coordinate descent method that

iteratively optimizes the energy with respect to a node by fixing
the labels of the remaining nodes. Therefore, it is a greedy strategy
to find a local minimum, and has been proved to be ineffective
(Szeliski et al., 2008). Compared to the early techniques such as
ICM, powerful new inference algorithms, such as graph cuts
(Boykov et al., 2001) and loopy belief propagation (LBP) (Yedidia
et al., 2000), have since been proposed, which can generally obtain
more accurate results with an acceptable efficiency. Taking LBP as
an example, it is a popular message passing algorithm for the infer-
ence of random fields. The algorithm iteratively uses local message
passing for a loopy graph based on the designed message passing
scheme to pass messages from the neighboring pixels. Although
the algorithm cannot guarantee to converge to a fixed point, due
to sticking in an infinite loop between two labels, it has a strong
local minimum property and has been proved to be highly effective
in various applications (Szeliski et al., 2008; Zhang and Jia, 2012;
Zhong and Wang, 2010; Zhong et al., 2014a).

In this work, a game-theoretic spectral-spatial classification
algorithm (GTA) based on a CRF model for hyperspectral images
is presented. Game theory, which was formally introduced by
Neumann and Morgenstern (1944) in 1944, can provide a powerful
theoretic framework for optimization problems involving multiple
decision-making, and has been successfully applied in a large num-
ber of fields, such as economics, evolutionary biology, medical
science, and computer science. For image processing, game theory
also has many applications. For example, the image semantic label-
ing problem can be addressed based on the concepts of game the-
ory through a non-cooperative game or a cooperative game (Yu
and Berthod, 1995; Berthod et al., 1996; Guo et al., 1998;
Ibragimov et al., 2012). There were also a few studies in the
1990s of inference methods based on game theory for the opti-
mization of the energy of random fields. A game strategy approach
was proposed by Yu and Berthod (1995) in 1995, in which an n-
person non-cooperative game was designed to yield an optimiza-
tion algorithm that converges to a local minimum. This algorithm
is similar to ICM in that each player independently selects its
own strategy to minimize its own loss in the non-cooperative
game. In the following years, cooperative game theory was used
to obtain the labels of pixels, based on a random field model, by
designing an n-person cooperative game (Guo et al., 1998). How-
ever, this algorithm needs to iteratively form a coalition of players.

In this paper, game theory is applied to spectral-spatial hyper-
spectral image classification based on a CRF model. In the GTA
algorithm, CRF is used to model the image considering the spatial
contextual information, and a cooperative game is designed to
obtain the labels. The basic idea is to consider the classification
as a game, in which the pixels of the image are regarded as the
players, and the labels are regarded as the strategies. The payoff
functions are related to the objective function of CRF, and can be
optimized to obtain the maximum expected payoff of pixels, con-
sidering the mixed strategies. This step can be easily parallelized
due to the consideration of the local expected payoff, and can be
quickly used to establish the foundation for the following cooper-
ative game, without the requirement for multiple iterations, since
the mixed strategy can consider the uncertainty of the set of its
pure strategies. The coalition, which is the key problem of a coop-
erative game, is then formed by the designed merge rule based on
the prior knowledge of the spatial patterns of the land-cover types,
so that a decisive coalition combined with majority game theory
can be performed to select the strategy for each player. The GTA
algorithm using a CRF model for hyperspectral image classification
can be summarized as follows.

1. The game-theoretic framework for image classification is pre-
sented. In the framework, the correspondence between image
classification and game theory is established.
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