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a b s t r a c t

This study investigates the usefulness of a per-pixel bias-variance error decomposition (BVD) for under-
standing and improving spatially-explicit data-driven models of continuous variables in environmental
remote sensing (ERS). BVD is a model evaluation method originated from machine learning and have
not been examined for ERS applications. Demonstrated with a showcase regression tree model mapping
land imperviousness (0–100%) using Landsat images, our results showed that BVD can reveal sources of
estimation errors, map how these sources vary across space, reveal the effects of various model charac-
teristics on estimation accuracy, and enable in-depth comparison of different error metrics. Specifically,
BVD bias maps can help analysts identify and delineate model spatial non-stationarity; BVD variance
maps can indicate potential effects of ensemble methods (e.g. bagging), and inform efficient training sam-
ple allocation – training samples should capture the full complexity of the modeled process, and more
samples should be allocated to regions with more complex underlying processes rather than regions cov-
ering larger areas. Through examining the relationships between model characteristics and their effects
on estimation accuracy revealed by BVD for both absolute and squared errors (i.e. error is the absolute or
the squared value of the difference between observation and estimate), we found that the two error met-
rics embody different diagnostic emphases, can lead to different conclusions about the same model, and
may suggest different solutions for performance improvement. We emphasize BVD’s strength in reveal-
ing the connection between model characteristics and estimation accuracy, as understanding this rela-
tionship empowers analysts to effectively steer performance through model adjustments.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Researchers and practitioners agree that careful assessment of
analysis and modeling accuracy is necessary for using remote sens-
ing products in policy and decision making (e.g. Campbell and
Wynne, 2011; Congalton and Green, 2009). Effective model evalu-
ations should go beyond describing the model, and provide
insights for understanding and improving model performance.
Environmental remote sensing (ERS) research in these directions
has long focused on classification accuracy (e.g. Ma et al., 2017;
Comber et al., 2012; Strahler et al., 2006; Congalton, 1991;
Campbell, 1981), while remotely sensed data are also frequently

used to estimate important continuous variables for environmen-
tal and ecological studies, such as land imperviousness (e.g. Xian
et al., 2011), foliar nitrogen concentration (e.g. Eitel et al., 2014),
land surface temperature (e.g. Weng and Fu, 2014) and soil mois-
ture (e.g. Rodríguez-Fernández et al., 2016); sometimes although
the response variable of interests is categorical, analysts may
choose to use a model that estimates the likelihood of the occur-
rence of a category. In both cases, continuous instead of categorical
errors are under investigation. Analyzing continuous errors is very
different from analyzing categorical errors, due to their intrinsi-
cally different mathematical features. Current standard continuous
model evaluations considerably rely on overall accuracy measures.
Among the most commonly used are mean error, root mean
squared error, and mean absolute error, with the average taken
over pixels in a model evaluation dataset. Although such summary
measures provide useful descriptions of overall model
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performance, they offer limited assistance for achieving important
objectives of model evaluation – understanding and improving
model performance. Especially, they do not inform spatially-
explicit understandings about model performance, which has been
proven beneficial by many authors (e.g. Khatami et al., 2017; Löw
et al., 2015; McGwire and Fisher, 2001).

In ERS, data-driven geospatial models are widely used, includ-
ing such supervised image processing algorithms as least-squares
regressions, regression trees, for modeling continuous variables,
and support vector machines, random forests, for modeling cate-
gorical variables. Many of these models originated from the fields
of statistics and machine learning, where bias-variance error
decomposition (BVD) is a proven-effective and commonly-used
model evaluation method (e.g. Gao et al., submitted for
publication; Domingos, 2000; Geman et al., 1992). BVD attributes
expected modeling error to three sources: ‘‘bias”, ‘‘variance”, and
‘‘noise”. These sources are independent from each other and
require different methods to reduce. Hence, BVD can help analysts
understand the effects of different model characteristics on estima-
tion accuracy, and therefore develop effective plans altering model
characteristics to achieve desired performance. Existing aspatial
studies (e.g. Gao et al., submitted for publication; Schapire et al.,
1998; Breiman, 1996) have demonstrated BVD’s benefits in com-
paring and explaining the performances of data-driven models,
addressing questions like why one model outperforms another,
and why certain modeling practices work for some problems but
not for others.

Additionally, BVDanalyzesmodelperformanceat individualdata
points – if applied in ERS image processing, BVD can generate per-
pixel model evaluations. This is different from how model ‘‘bias”
and ‘‘variance” have conventionally been discussed in geospatial
modeling, where spatial stationarity is often assumed (i.e. assuming
the underlying process is uniform within a study area), and model
bias and variance are summary descriptions over multiple model
evaluation data points sampled across the study area. In contrast,
BVD acknowledges that both underlying processes and model per-
formances can vary over space, and the per-pixel analysis can reveal
howmodeling errors at different parts of the study area may be dri-
ven by different sources. Since different methods are needed to
reduce different error sources, analysts can then effectively apply
region-specific model-improvement strategies.

These traits of BVD indicate its potential for addressing the
needs of ERS model evaluation, while limited work exists exploring
the benefits of using BVD in spatially-explicit data-driven model-
ing. Gao et al. (2016) examined categorical-error BVD with data-
driven geospatial classification models of a binary land cover
change variable (new built-up development or not) using environ-
mental variables, and found that BVD can help test the validity and
mitigate the undesired impacts of spatial non-stationarity assump-
tions and can inform efficient training sample acquisition. How-
ever, continuous- and categorical-error BVDs differ substantially
at both analytical and practical levels. Categorical-error-based
insights do not necessarily apply to continuous errors, and
continuous-error BVD has not been examined for geospatial mod-
eling generally nor for ERS applications more specifically.

This study uses a regression tree model mapping land impervi-
ousness (a continuous variable ranging 0–100%) using Landsat data
as a showcase to examine the usefulness of continuous-error BVD
for understanding and improving data-driven geospatial models.
We investigate ways to interpret the spatial patterns of BVD error
components, and explore avenues to use BVD insights for design-
ing model improvement efforts, with a focus on the BVD insights
that are not accessible through common model evaluation meth-
ods. The study area (Washtenaw County, MI, USA) is the same as
Gao et al. (2016), allowing readers to synthesize continuous- and
categorical-error BVDs through direct comparison.

2. Methods

2.1. Definitions of continuous errors

Predictive models estimate the response variable Y using the
predictor vector X. In this study, Y is land imperviousness ranging
0–100%, and X is a vector of reflectance values of various Landsat
bands. A data-driven (a.k.a. supervised, empirical, or statistical)
model, f , is constructed by a learning algorithm using a collection
of observed ðX;YÞ pairs – a training set – with the goal to approx-

imate the response Y with the model estimate Ŷ ¼ f ðXÞ. In this
paper, we use upper-cased symbols for the names of variables,
and lower-cased symbols for individual values. In the text, X;Y
and x; y can sometimes be interpreted synonymously, but in math-
ematical equations, the distinction provides important informa-
tion. For example, writing the statistical expectation E of a model
f as Eðf ðx;YÞÞ emphasizes that x is a constant vector and the expec-
tation is taken with respect to the variable Y .

An error definition (a.k.a. a loss function) LðY; ŶÞ is the cost of

predicting Ŷ when the response is Y . For continuous variables,

squared error LsqðY; ŶÞ ¼ ðY � ŶÞ2 and absolute error LabsðY ; ŶÞ ¼
jY � Ŷ j are widely used. They respectively are the squared or
absolute value of the difference between the response and the
estimate. The two error metrics gained popularity for different
reasons: Squared error is mathematically tractable and leads to
simplified forms in many theoretical and numerical analyses;
absolute error directly measures the magnitude of the difference
between response and estimate without changing the dimension
of the response variable, hence is more natural for most
estimation-focused applications. Some authors (e.g. Willmott
et al., 2009) have advocated increasing the use of absolute error,
considering that squared error’s popularity arose from convenience
rather than scientific justification. To be complete, we examine the
BVD of both squared and absolute errors in this study, which also
provides a way to compare the two error metrics.

Typical model training parameterizes a model to minimize a
chosen loss function given training data, e.g., the ordinary least

squares regression minimizes the sum of LsqðY; ŶÞ over the training
set.

2.2. Definitions of BVD error components

BVD is most commonly used to evaluate data-driven models
(e.g. linear regressions, decision trees), although it can be applied
to any model with stochastic component(s). BVD was originally
developed for analyzing squared errors in statistics (Geman et al.,
1992), and was quickly recognized as an important tool for under-
standing inductive learning. In late 1990s, a number of studies
attempted to extend the BVD definition to classification errors,
but were all challenged by the mathematical differences between
continuous and categorical variables. Uniting these diverged
efforts, Domingos (2000) argued that instead of separately defining
BVD for different loss functions, a better alternative is to develop a
generalized BVD definition and examine its special cases for speci-
fic loss functions accordingly. His generalized definition has then
been widely accepted. Later, James (2003) pointed out that in
BVD analysis two sets of quantities are of interests: ‘‘characteristic
quantities” and ‘‘effect quantities”. For example, ‘‘variance” as a
characteristic quantity measures the randomness of a variable,
and ‘‘variance effect” measures the amount of estimation error
caused by this randomness; similarly we have ‘‘bias” and ‘‘bias
effect”. Gao et al. (submitted for publication) recognized that
understanding the connection between model ‘‘characteristics”
and their ‘‘effects” on estimation accuracy can be essential for
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