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a b s t r a c t

This work addresses the problem of detecting and classifying materials and targets in hyperspectral
images based on their reflectance spectrum. Accurate target detection in hyperspectral imagery requires
a radiative transfer model that maps between the spectral reflectance domain and the measured radiance
domain. Such a model can be employed in two ways for detection – using atmospheric compensation,
where the measured hyperspectral radiance image is converted to a reflectance image, and using forward
modeling, where the target reflectance spectrum is converted to an at-sensor target radiance spectrum.
This work presents a forward modeling detection method that utilizes in-scene information to estimate
the parameters in the radiative transfer model. Uncertainty in the radiative transfer model and variability
of the target spectra are captured using a constrained subspace model for the target. Target detection
using library spectra and target rediscovery are evaluated in hyperspectral images of a complex urban
scene.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Remote hyperspectral sensing is a powerful tool for discrimi-
nating between different materials based on their spectral reflec-
tance or emissivity signatures. In contrast to conventional
cameras, a hyperspectral sensor measures radiance in a large num-
ber of narrow spectral bands where the resulting image contains a
detailed spectral signature in each pixel. With this information it is
possible to detect and classify surface materials and targets in the
image in a pixel-wise fashion, for example by matching the mea-
sured spectra to a library of materials with known spectra. There
are many different hyperspectral sensors, both airborne and satel-
lite systems, which can obtain measurements of ground spectra.
An overview of hyperspectral analysis methods and a table of
example sensors can be found in Bioucas-Dias et al. (2013). Here,
we focus on target detection using airborne hyperspectral sensors
and present results from the visible and near-infrared spectral
range.

The main problem for target detection in hyperspectral data is
that variations in illumination, atmosphere, and ground geometry
modifies the measured at-sensor radiance, complicating compar-

isons with known spectral appearances, see Fig. 1. For accurate tar-
get detection, these factors must be modeled and accounted for.

A radiative transfer model Lðk;a;XÞ describes how the reflec-
tance spectrum of a material aðkÞ is mapped to the radiance spec-
trum measured by the sensor. X represents a set of model
parameters that describe illumination, sun angle, atmosphere
effects, ground geometry that give rise to reflections and shadows,
sensor inaccuracies, etc. A comprehensive model of Lðk;a;XÞ is
complex and many parameters in X are unknown or uncertain,
making the prediction of the spectral appearance of a material in
the image uncertain. Additional sources of variability include sen-
sor noise, sensor calibration errors, and spectral mixing of materi-
als due to a limited spatial resolution. It is key to model this
uncertainty and variability in spectral signature matching for tar-
get detection. Deterministic or stochastic models, sometimes also
referred to as structured and unstructured models, respectively,
can be used to this end. A deterministic model is typically imple-
mented using a linear signal subspace that models the main spec-
tral variations as a sum of basis vectors. A common stochastic
model is a multivariate Gaussian distribution that describes vari-
ability around a mean spectral shape using a variance–covariance
matrix. Frequently, spectral variability is modeled as a mix of
deterministic and stochastic components. Different modeling
choices give rise to a plethora of different detection methods such
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as Spectral Angle Mapper, Constrained Energy Minimization,
Generalized Likelihood Ratio Test, Adaptive Coherence/Cosine
Estimator, Adaptive Matched Filter, Adaptive Subspace Detector,
and Orthogonal Subspace Detector. Detailed descriptions of these
methods are outside the scope of this presentation, good overviews
are found in Manolakis and Shaw (2002), Manolakis et al. (2003),
Ientilucci (2005), Nasrabadi (2014), and Geng et al. (2016).

Target detection can be performed either in the reflectance
domain based on the reflectance spectrum aðkÞ or in the radiance
domain based on the measured radiance spectrum Lðk;a;XÞ, see
Fig. 1. The former approach requires Lðk;a;XÞ to be inverted to
obtain an estimate of the reflectance spectrum aðkÞ of the material
in a pixel. All pixels in the hyperspectral image must be converted,
and for target detection a model of the uncertainty in the reflec-
tance spectrum for each individual pixel must be considered. This
requires significant computational resources and several authors
have therefore advocated that the detection should take place in
the radiance domain instead (Healey and Slater, 1999; Ientilucci
and Schott, 2005; Haavardsholm et al., 2007; Matteoli et al.,
2011). The target reflectance spectrum, in this approach, is mapped
through Lðk;a;XÞ to estimate how it would appear if measured by
the hyperspectral sensor. Different possible appearances can be
predicted by varying the model parameters in X within plausible
ranges. The target spectral variability can then be summarized in
a deterministic or stochastic target model that is used for the sub-
sequent detection. This so-called forward modeling approach is
computationally light-weight as only one single model of the tar-
get spectral variability is required.

A major component of the radiative transfer model Lðk;a;XÞ is
the influence of the atmosphere (Griffin and Burke, 2003; Ben-
Dor et al., 2004; Gao et al., 2006; Yuan and Elvidge, 1996), e.g.,
transmission and scattering parameters. Atmosphere effects are
well studied and simulation programs such as MODerate resolu-
tion TRANsmission (MODTRAN) (Berk et al., 1989) can give accu-
rate values for these parameters if detailed knowledge of the
temperature, humidity, air pressure, aerosol composition, and
other factors are available. Generally, this is not the case, and tar-
get detection methods that rely on MODTRAN must therefore also
handle uncertainty. Most previous forward modeling methods
(Healey and Slater, 1999; Haavardsholm et al., 2007; Kolodner,
2008; Matteoli et al., 2011) run a large number of MODTRAN sim-
ulations with different parameterizations to generate a number of
plausible target radiance signatures. The variability of these is cap-
tured using a deterministic or stochastic model as discussed above.

A different approach to estimating atmosphere parameters is to
use in-scene information from the actual image. This may be a
favorable approach depending on the available knowledge of
weather and atmosphere composition parameters. Moreover, as
in-scene methods utilize the actual image data, there is also the
potential to model and account for sensor characteristics, calibra-
tion errors, and noise. Therefore, in the context of target detection,
in-scene methods may provide a more compact and accurate
model of the uncertainty of spectral signature appearances. A
drawback of in-scene methods is that the true reflectance of one
or several materials in the scene must be known, or other assump-
tions about the scene content must be made. Manual interaction
may also be required.

Perhaps the most well-known and used in-scene method is the
Empirical Line Method (ELM) which estimates atmosphere trans-
mission and scattering parameters using the true reflectance spec-
tra of two or more materials in the scene (Roberts et al., 1986;
Conel et al., 1987; Kruse et al., 1990; Eismann, 2012; Mei et al.,
2016). In a slightly relaxed method, here referred to as the Empir-
ical Ratio Method (ERM), only one reference material in the scene
must be known to estimate the multiplicative atmosphere trans-
mission, while the additive scattering term is found using the
Darkest Pixel or Minimum Histogram method (Themistocleous
and Hadjimitsis, 2013; Campbell, 1993; Chavez et al., 1977;
Teillet and Fedosejevs, 1995). Vegetation Normalization
(Eismann, 2012, 2006) is an example of an ERM, in which vegeta-
tion is used as reference material.

The Flat Field approach (Roberts et al., 1986) works in a similar
fashion, assuming that an operator can identify a material with a
flat spectrum in the scene. Methods that assume no knowledge
of any specific materials in the scene have also been proposed.
The Internal Average Relative Reflectance method (Kruse, 1988)
uses the average spectral signature of the entire scene as a map-
ping factor from the radiance domain to a relative reflectance
domain. With a similar idea, the QUick Atmospheric Correction
(QUAC) method uses the average of a number of end-member sig-
natures extracted from the scene (Bernstein et al., 2005, 2008) as
mapping factor.

In this work, we evaluate a target detection method which cap-
tures the spectral variation of the target using forward modeling of
in-scene information for estimation of the parameters in the radia-
tive transfer model Lðk;a;XÞ. This is an approach that has not been
evaluated as intensively as MODTRAN-based approaches in the lit-
erature, although the basic idea is not new (Eismann, 2012 p. 30).
Target detection using library reflectance signatures and target
rediscovery is demonstrated using large hyperspectral data sets
acquired over an urban area.

The remainder of the paper is organized as follows. Section 2
detail the forward modeling of the target signature using in-
scene information and how the spectral variation is captured in
the target model. Section 3 describes the constrained spectral
matching. Section 4 introduces the four hyperspectral data sets
used in the evaluation. Section 5 presents experimental results
from both target detection with library spectra and from target
rediscovery using target spectra from an image. Finally, Sections
6 and 7 conclude the paper with discussion and conclusions,
respectively.

2. Modeling

2.1. Radiative transfer model

A radiative transfer model describes how the direct solar irradi-
ance and indirect downwelling radiance are reflected at ground
objects, and then transmitted and scattered by the atmosphere as

Fig. 1. A forward modeling function describes the radiative transfer from the
reflectance domain to the radiance domain.
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