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a b s t r a c t

Tropical dry forests (TDFs) in the Americas are considered the first frontier of economic development
with less than 1% of their total original coverage under protection. Accordingly, accurate estimates of
their spatial extent, fragmentation, and degree of regeneration are critical in evaluating the success of
current conservation policies. This study focused on a well-protected secondary TDF in Santa Rosa
National Park (SRNP) Environmental Monitoring Super Site, Guanacaste, Costa Rica. We used spectral sig-
nature analysis of TDF ecosystem succession (early, intermediate, and late successional stages), and its
intrinsic variability, to propose a new multiple criteria spectral mixture analysis (MCSMA) method on
the shortwave infrared (SWIR) of HyMap image. Unlike most existing iterative mixture analysis (IMA)
techniques, MCSMA tries to extract and make use of representative endmembers with spectral and spa-
tial information. MCSMA then considers three criteria that influence the comparative importance of dif-
ferent endmember combinations (endmember models): root mean square error (RMSE); spatial distance
(SD); and fraction consistency (FC), to create an evaluation framework to select a best-fit model. The
spectral analysis demonstrated that TDFs have a high spectral variability as a result of biomass variability.
By adopting two search strategies, the unmixing results showed that our new MCSMA approach had a
better performance in root mean square error (early: 0.160/0.159; intermediate: 0.322/0.321; and late:
0.239/0.235); mean absolute error (early: 0.132/0.128; intermediate: 0.254/0.251; and late:
0.191/0.188); and systematic error (early: 0.045/0.055; intermediate: �0.211/�0.214; and late:
0.161/0.160), compared to the multiple endmember spectral mixture analysis (MESMA). This study high-
lights the importance of SWIR in differentiating successional stages in TDFs. The proposed MCSMA pro-
vides a more flexible and generalized means for the best-fit model determination than common IMA
methods.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

As one of the most disturbed and the least protected ecosystems
on earth (Hoekstra et al., 2005; Janzen, 1988a,b), Tropical Dry For-
ests (TDFs) account for about 46% of tropical forests (Olson et al.,
2001). Despite the worldwide coverage of TDFs, there are signifi-
cant knowledge gaps regarding their ecological, biological, and bio-
geochemical dimensions as their rate of disturbance and
deforestation far surpasses land use/cover change processes in
other tropical biomes (Hoekstra et al., 2005). As a result of different
socio-economic forces, the TDFs landscape is a mixture of forests

undergoing different stages of ecological succession as well as dif-
ferent agricultural land uses. These land cover elements are inte-
grated for management and conservation purposed under a term
denominated ‘‘agro-landscapes”. The concept of ‘‘agro-landscape”
is a fundamental building block in establishing conservation and
restoration policies of TDFs across the Americas.

Secondary TDFs presented in ‘‘agro-landscapes” can generally
be divided into three levels of succession according to their hori-
zontal and vertical structure, leaf area index (LAI), green canopy
cover density, and species composition (Arroyo-Mora et al., 2005;
Kalacska et al., 2005a, 2004a, 2005c). These three successional
stages can be characterized as early, intermediate, and late. This
nomenclature provides a way to better understand how TDFs
recover after disturbances, and it has served as the framework
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for extensive collaborative inter-comparison studies across the
Americas (e.g., Alvarez-Anorve et al., 2012; Castillo et al., 2011;
Garcia Millan et al., 2014; Kalacska et al., 2007b).

In the context of quantifying ecological succession in TDFs,
remote sensing approaches have been implemented in Mexico,
Costa Rica, and Brazil with different degrees of success (e.g.,
Arroyo-Mora et al., 2005; Castillo et al., 2012; Garcia Millan
et al., 2014; Grinand et al., 2013; Helmer et al., 2010; Kalacska
et al., 2005a; Moura et al., 2012). Early studies mainly attempted
to link spectral reflectance or vegetation indices with specific for-
est structural parameters (e.g., tree height, canopy openness, and
LAI) (Arroyo-Mora et al., 2005; Kalacska et al., 2005a, 2005b,
2005c) or biodiversity parameters (e.g., Shannon diversity and Hol-
dridge Complex Index) (Kalacska et al., 2007b). More recently,
LiDAR (Castillo et al., 2012, 2011), and multi-angle (Garcia Millan
et al., 2014, 2013) remote sensing have shown their superiority
in exploring ecological restoration process. These previous studies
have two common denominators. First, forest structure and biodi-
versity instead of ‘‘age since last disturbance” can better describe
TDFs regeneration, because the growth of TDFs varies not only with
forest age but with local factors such as precipitation, soil type, and
previous land use (Alvarez-Anorve et al., 2012; Arroyo-Mora et al.,
2005; Castro et al., 2003; Lucas et al., 2000). Second, the extent of
TDFs can be better mapped during the dry season when biophysi-
cal parameters tend to be more pronounced and distinctive. This
phenological feature is independent of which sensor is considered
(multi-spectral, hyperspectral, multi-angle, or LiDAR), and it has
been employed to map the extent of tropical dry forests across
the Americas using MODIS (Portillo-Quintero and Sanchez-
Azofeifa, 2010).

Although significant advances concerning the characterization
of the state and extent of TDFs have been achieved, accurate clas-
sification of these TDFs as a function of successional stages remains
an important area of concern for research due to two properties in
secondary TDFs: the similar spectral response between succes-
sional stages and the wide variation of forest pathways within
the same successional stage (Helmer, 2000; Lucas et al., 2000;
Neeff et al., 2006). The solution to the former requires a wave-
length selection process that can well differentiate successional
stages. Since a succession stage is driven by species composition
which is, in turn, driven by different types of propagation mecha-
nisms (Castillo et al., 2011), the spectral reflectance of TDFs is con-
sequently tied to them (Hesketh and Sanchez-Azofeifa, 2012).
From this point of view, wavelengths that reflect these propagation
mechanisms or related ecological variables have a higher capacity
to differentiate succession stages. Asner (1998) demonstrated the
relative importance of biophysical (e.g., leaf and stem area and foli-
age clumping) and biochemical (e.g., foliar lignin and nitrogen) fac-
tors on forest canopy reflectance in visible, near, and shortwave
infrared (SWIR) spectral ranges. His research confirmed previous
observations (Fourty et al., 1996; Woolley, 1971) that organic fea-
tures in leaf spectra were largely obscured by water in the SWIR.
This conclusion was then successfully employed to map vegetation
in arid and semi-arid (Asner and Lobell, 2000) and coniferous
(Lobell et al., 2001) ecosystems. In this context and during the mid-
dle of dry season, TDFs present a similar landscape pattern to arid
and semi-arid ecosystems, where most of green leaves fall and
exposed wood, litter, and bare soil dominate the forests’ spectral
signatures. Therefore, it is essential to explore the spectral features
of this ecosystem in the SWIR to better map the TDFs.

The secondary TDFs’ spectral signature is also affected by the
wide variation of forest pathways (Alvarez-Anorve et al., 2012;
Hesketh and Sanchez-Azofeifa, 2012; Kalacska et al., 2007b),
resulting in the so-called spectral variability that introduces great
uncertainty in forest mapping. To address spectral variability,
two categories of strategies have been proposed (Somers et al.,

2011). The first is spectral feature analysis (SFA) (e.g., Debba
et al., 2006; Dennison et al., 2006; Somers et al., 2010, 2009). The
second is an iterative mixture analysis (IMA) (Asner and Lobell,
2000; Roberts et al., 1998; Song, 2005). Both of these strategies
are built on the basis of spectral mixture analysis (SMA), which
treats the spectra of each pixel as a composition of several spectral
signatures (endmembers) (Roberts et al., 1998). However, the fun-
damental principles behind these strategies are totally different.
SFA tries to reduce or eliminate spectral variability before pixel
unmixing. It could efficiently generate pure endmembers with
higher between-class variation and lower in-class variation, but
it would also lose useful information or introduce greater uncer-
tainty in its results (Somers et al., 2011). This shortcoming in SFA
can be well overcome by IMA. IMA never attempts to optimize
endmember purity before the unmixing process. Instead, it directly
tests all possible endmember combinations (or endmember mod-
els) for a given pixel and then selects the one with the best fit.

As the first and the most representative IMA technique, multi-
ple endmember SMA (MESMA) (Roberts et al., 1998) has been
widely and successfully applied in vegetation mapping applica-
tions (e.g., Liu and Yang, 2013; Roberts et al., 1998; Sonnentag
et al., 2007; Youngentob et al., 2011). Some similar techniques
have also been proposed, such as Bayesian SMA (BSMA) (Song,
2005) and auto Monte Carlo spectral unmixing model (AutoMCU)
(Asner and Lobell, 2000). Nevertheless, there are still some prob-
lems present with the IMA approach. The first one exists in end-
member extraction. Although the research community has
recognized that representative endmembers, rather than spec-
trally purest endmembers, could better explain within-class spec-
tral variation (Deng and Wu, 2013; Powell et al., 2007), the
priorities of existing endmember extraction techniques such as
spatial-spectral endmember extraction (SSEE) (Rogge et al., 2007)
and automatic endmember bundle extraction for MESMA
(Somers et al., 2012) are still searching vertexes or signature bun-
dles near vertexes as endmember candidates, but within a spatial
context. Their strategy is reasonable, however it functions best
under conditions wherein the vertexes are present for a given land
cover. In secondary TDFs, there may be no significant vertexes. The
second problem in IMA refers to the best-fit model selection. On
the one hand, existing IMA methods may solely or mainly adopt
one fitness indicator to calculate the best-fit model. For example,
the probability distribution of endmember signatures and unmix-
ing fractions is the only indicator considered in BSMA and Auto-
MCU, respectively. In MESMA the unmixing residual is, in fact,
the most influential indicator. On the other hand, even though
MESMA employs a very complex procedure to exclude those ill-
fit models by combining some other indicators such as spatial
adjacency, it is a stepwise filtering technique. Models that have
been excluded in former steps cannot be involved in future steps
despite the fact they may show great fitness later on. Furthermore,
MESMA cannot incorporate any additional indicators due to its
tight algorithm structure.

Based on previous work in TDFs succession quantification and
existing forest mapping strategies, the objective of this paper is
to demonstrate a methodology for better mapping TDFs in differ-
ent successional stages. This study analyzed the spectral signature
and variability of different successional forests, extracted SWIR as
efficient spectrum range, and then proposed a multiple criteria
spectral mixture analysis (MCSMA) approach. To account for the
great variability in TDFs, the study’s approach adopted a multi-
classifiers and spatial homogeneity based technique on endmem-
ber extraction. Then, specifically, the study constructed a fitness
evaluation framework to select the best-fit endmember model
among all possible models by simultaneously considering three
indicators: root mean square error (RMSE); spatial distance (SD);
and fraction consistency (FC).
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