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a b s t r a c t

A compensation of atmospheric effects is essential for mm-sensitivity in differential interferometric syn-
thetic aperture radar (DInSAR) techniques. Numerical weather predictions are used to compensate these
disturbances allowing a reduction in the number of required radar scenes. Practically, predictions are
solutions of partial differential equations which never can be precise due to model or initialisation uncer-
tainties. In order to deal with the chaotic nature of the solutions, ensembles of predictions are computed.
From a stochastic point of view, the ensemble mean is the expected prediction, if all ensemble members
are equally likely. This corresponds to the typical assumption that all ensemble members are physically
correct solutions of the set of partial differential equations. DInSAR allows adding to this knowledge.
Observations of refractivity can now be utilised to check the likelihood of a solution and to weight the
respective ensemble member to estimate a better expected prediction.
The objective of the paper is to show the synergy between ensemble weather predictions and differen-

tial interferometric atmospheric correction. We demonstrate a newmethod first to compensate better for
the atmospheric effect in DInSAR and second to estimate an improved numerical weather prediction
(NWP) ensemble mean. Practically, a least squares fit of predicted atmospheric effects with respect to
a differential interferogram is computed. The coefficients of this fit are interpreted as likelihoods and
used as weights for the weighted ensemble mean. Finally, the derived weighted prediction has minimal
expected quadratic errors which is a better solution compared to the straightforward best-fitting ensem-
ble member. Furthermore, we propose an extension of the algorithm which avoids the systematic bias
caused by deformations. It makes this technique suitable for time series analysis, e.g. persistent scatterer
interferometry (PSI). We validate the algorithm using the well known Netherlands-DInSAR test case and
first show that the atmospheric compensation improves by nearly 40% compared to the straightforward
technique. Second, we compare our results with independent sea level pressure data. In our test case, the
mean squared error is reduced by 29% compared to the averaged ensemble members with equal weights.
An application demonstration using actual Sentinel-1 data and a typical test site with significant subsi-
dence (Mexico City) completes the paper.
� 2015 The Authors. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and
Remote Sensing, Inc. (ISPRS). This is an open access article under the CC BY license (http://creativecom-

mons.org/licenses/by/4.0/).

1. Introduction

Synthetic aperture radar (SAR) is a popular remote sensing
technique to observe the topography of the earth and its millime-
tre displacements. The strength of a signal which is scattered back
is independent of the actual weather condition. However, the wave
propagation velocity depends on water vapour, pressure and tem-
perature (see Smith and Weintraub, 1953).

Differential interferometric synthetic aperture radar (DInSAR)
images are subtracted phase information of two SAR acquisitions,
corrected for topography, and are therefore affected by atmo-
sphere. In order to allow precise interferometric measurements,
the atmospheric effect needs to be compensated and is known as
atmospheric phase screen (APS). Currently, the time series analysis
using large stacks of SAR data is well established. Essentially, it is
based on the uncorrelated atmosphere with respect to time requir-
ing a long time series (see Ferretti et al., 2001). Different authors
have successfully demonstrated the mitigation of the APS using
NWP, for example (Holley et al., 2007; Jung et al., 2014; Nico
et al., 2011; Adam, 2013; Pierdicca et al., 2011; Perissin et al.,
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2011). These papers show that the hydrostatic component can be
estimated using NWP models. However in practice, the wet-delay
is more difficult to reproduce using numerical weather prediction
(NWP) due to its turbulent nature. For the second application, i.e.
improved numerical weather prediction (Pichelli et al., 2015) have
demonstrated a better forecast for weak to moderate precipitation.

NWP implements a set of partial differential equations (PDEs).
The solution can never be precise due to model or initialisation
uncertainties. In practice, the initial atmosphere state data are spa-
tially undersampled and affected by measurement errors. Addi-
tionally, different options (e.g. resolution, size of simulated area,
physics options and integration time step length) result in different
valid (i.e. physically correct) solutions of the PDEs (Liu et al., 2011).
Another effect results from error propagation. Imprecise convec-
tion strength causes timing deviations. As a result, humidity is dis-
located with time of day.

Epstein (1969) proposed a stochastic dynamic model (i.e.
ensembles of PDEs solutions) to handle uncertainties produced
by the weather prediction model or the initialisation data. An
ensemble represents likely atmospheric states and it spreads the
uncertainties. It is a well established practice to use independent
atmosphere state observations e.g. sounding, lidar and weather
stations. Hence, ensemble members can be verified by such obser-
vations. A straightforward approach is to use only the most likely
(best fitting) ensemble member. Another method linearly combi-
nes the ensemble members. The second tactic allows a better fit
of the prediction to the practically observed data. However, this
improvement can only be ensured at the measurement location.
In other areas, over-fitting can occur. We demonstrate the use of
DInSAR data as independent atmosphere measurements avoiding
over-fitting. The improvement is based on the high resolution
and sensitivity as well as the large spatial coverage of the radar
data.

In particular, DInSAR data provide indirect measurements of
pressure, temperature and humidity which are projected into
SAR geometry and mapped into delay measurements physically
related to refractivity. For this reason, the ensemble members
can be assessed regarding their likelihood of occurrence. Instead
of the straightforward best-fitting ensemble member, the
weighted ensemble mean provides the final atmosphere hindcast.

For n ensemble members F ¼ ff 1; . . . ; f ng,
WEMðFÞ ¼

X
i2f1;...;ng

ai f i ð1Þ

the weighted ensemble mean (WEM) with weights (likelihoods)
ai 2 Rþ and

P
i2f1;...;ngai ¼ 1 equals the expected value. In addition,

the mass conservation can be relaxed to
P

i2f1;...;ngai � 1 (R. Bamler,
personal communication 4 May 2015). As a consequence, the esti-
mated prediction can be improved in case of biased (i.e. physically
incorrect) solutions.

The objective of the actual work is to present a framework
which produces synergy between ensemble weather predictions
and DInSAR measurements. It means both benefit from each other.

2. Methods

The APS (/0
a) is composed of a hydrostatic term corresponding

to (refractivity Nh) and a wet term corresponding to (refractivity
Nw). Both are influenced by temperature ðTÞ. The hydrostatic term
is additionally influenced by total pressure ðPÞ while the wet term
is influenced by water vapour ðeÞ. Based on physics, the range dis-
tance deviation is defined by

/0
a ¼ 10�6

Z ~s

~pði;jÞ
Nð~vÞd~v ð2Þ

where

N ¼ K1
P
T|ffl{zffl}

Nh

þK2
e
T
þ K3

e

T2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Nw

: ð3Þ

~pði;jÞ is the three dimensional location on Earth of the actual DInSAR
pixel and ~s is the position of the SAR-satellite. Eq. (3) models the
refractivity (N) and the coefficients (K1;K2;K3) are provided by
Rüeger (2002). Practically, for every pixel of the SAR-image, integra-
tion through the predicted three dimensional atmospheric state
produces an APS (/0

a) candidate. A differential interferogram is com-
posed of two SAR acquisitions. Of course, the corresponding APSs
are needed for both acquisition times (s1; s2). From ensemble mem-
bers and corresponding delays for both dates, candidates of APSs are
computed (/0

aðs1; �Þ;/0
aðs2; �Þ). A convex optimisation computes a

least norm fit of the NWP data matrix A with respect to the DInSAR
observation (/Iðs1; s2Þ) with r � c pixels:

minimise : jjrkjj2 ð4Þ

subject to:

rk ¼ Aa� /̂Iðs1; s2Þ
� �

k
for k 2 f1; . . . ; rcg ð5Þ

Xns1
k¼1

ak ¼ 1; ð6Þ

Xns1þns2

k¼ns1þ1

� ak ¼ 1; ð7Þ

Xrc
k¼1

Ak;i ¼ 0 for i 2 f1; . . . ;ns1 þ ns2g; ð8Þ

Xrc
k¼1

/̂Iðs1; s2Þ
� �

k
¼ 0: ð9Þ

where ns1 ; ns2 are the counts of ensemble candidates. The last two
constraints cope with the unknown interferometric phase offset.
Practically, coefficients (ai) of best-fitting linear combination are
interpreted as likelihoods. In doing so, the WEM equals the expec-
tation (Ef�g) definition in a stochastic meaning. Therefore, the
WEM equals the centre point of all predictions, such that the
expected quadratic error is minimal.

2.1. Model of atmospheric phase screen approximation and algorithm

The starting point is an absolute DInSAR phase / : N# Rr�c at
acquisition time s with r rows and c columns (see Kampes, 2006):

/ðsÞ ¼ /aðsÞ þ /dðsÞ þ /nðsÞ ð10Þ

/a; /d and /n : N # Rr�c are the phase delays caused by the atmo-
sphere, the deformation and noise, respectively.

An interferometric phase /I : N
2 # Rr�c is defined by:

/Iðs1; s2Þ ¼ /ðs1Þ � /ðs2Þ þ O ð11Þ
where O is a matrix (image) modelling the unknown interferomet-
ric phase offset. We assume that the atmosphere effect is statisti-
cally dominant compared to the deformation and the noise. Let
/0

aðs; kÞ : N2 # Rr�c be the k’th predicted APS candidate of a single
SAR acquisition. Similar to the weighted ensemble mean, the corre-
sponding APS candidates are weighted to approximate the SAR
acquisition’s atmosphere /aðsÞ.

/ðsÞ �
Xn

k¼1
asðkÞ/0

aðs; kÞ
� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{�/aðsÞ

ð12Þ
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