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Abstract

Periodic disturbances are common in control of mechanical systems. Such disturbances may be due to rotational elements such as motors and

vibratory elements. When the period of a periodic disturbance is fixed and known in advance, repetitive control can be used for attenuating their

effect. The most popular repetitive controller is based on the internal model principle. When the period is not fixed and unknown, adaptation

capability must be introduced. This paper presents some fundamental issues and new challenges in the design of controllers to deal with periodic

disturbances along with applications to mechanical systems.
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1. Introduction

Reference inputs and disturbances are often periodic in

mechanical control applications. Periodic disturbances may be

due to rotational components such as motors, and in such cases

the period may be assumed to be known or measurable. On the

other hand, if the periodic disturbance comes from vibrations

external to the servo control loop, the period may not be known

in advance. Repetitive control was originally formulated by

Inoue, Nakano, and Iwai (1981) to deal with repetitive

disturbances with a known period, and was developed by

many researchers (Hara, Yamamoto, Omata, & Nakano, 1988;

Hu & Tomizuka, 1993; Tomizuka, Tsao, & Chew, 1989;

Yamada, Riadh, & Funahashi, 1999 among others). Successful

applications of repetitive control include machining (Tsao &

Tomizuka, 1994) and computer hard disk drives (Chew &

Tomizuka, 1990). Early work on repetitive control was based

on the key assumption that the period of repetitive disturbance

is precisely known. While this assumption holds in many

applications, more recent research efforts have been directed at

dealing with cases where the period is not known in advance or

is time varying (Hu, 1992; Tsao & Nemani, 1992; Tsao, Qian,

& Nemani, 2000).

Repetitive control attempts to compensate for all repetitive

frequency components, the fundamental frequency component

as well as all higher order harmonics. In many cases, this is not

necessary. For example, if a control system is perturbed by a

single sinusoidal disturbance, it suffices if the compensator is

designed for the single frequency component. Peak filters

popular in hard disk drive (HDD) controls represent an example

(Kim, Kang, & Tomizuka, 2005) of this methodology. Such

approaches may be easier to extend to adaptive cases including

cases for repetitive signals with unknown periods (Landau,

Constantinescu, & Rey, 2005).

Closely related to repetitive control is iterative learning

control. Iterative learning control was motivated by robots that

must perform a repetitive operation over a finite time interval

(Uchiyama, 1978). Early work on the subject most frequently

cited is the betterment approach by Arimoto, Kawamura, and

Miyazaki (1984), but there have been other independent

developments of similar ideas at about the same time as Arimoto

(Longman, 2000). Iterative learning control and repetitive

control have formed a substantial research community.

The objective of this paper is to provide the fundamental

design and implementation issues of repetitive control as

related to the original discrete time repetitive controller

(Tomizuka et al., 1989), and to introduce selected recent

research activities on compensations for periodic disturbances.

Application examples are drawn from mechanical systems.
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2. Basics of repetitive control

Consider a discrete time system described by

Aðz�1ÞyðkÞ ¼ z�dBðz�1Þ½uðkÞ þ wðkÞ�
Aðz�1Þ ¼ 1þ a1z�1 þ � � � þ anz�n

Bðz�1Þ ¼ b0 þ b1z�1 þ � � � þ bmz�m
(1)

where u, y and d are, respectively, the input, output and

disturbance, z�1 represents one time step delay, and d is the

pure delay steps. Note that the input–output transfer function is

Pðz�1Þ ¼ z�dBðz�1Þ
Aðz�1Þ (2)

Assume that the system is asymptotically stable, i.e. the

poles of the transfer function are all inside the unit circle. B(z�1)

is written as

Bðz�1Þ ¼ BCðz�1ÞBuðz�1Þ
Bcðz�1Þ ¼ b0 þ bc

1z�1 þ � � � þ bc
mcz�mc

Buðz�1Þ ¼ 1þ bu
1z�1 þ � � � þ bu

muz�mu
(3)

where Bc(z�1) and Bu(z�1) contain, respectively, cancelable

zeros and uncancelable zeros. Uncancelable zeros include all

unstable zeros, i.e. those on and outside the unit circle.

The disturbance w(k) is repetitive with period N, i.e.

ð1� z�NÞwðkÞ ¼ 0 (4)

The control objective is to achieve asymptotic regulation of

the output error, i.e.

limk!1eðkÞ ¼ 0 (5)

where e(k) = yd(k) y(k) and yd is the desired output. yd(k) is

constant or periodic with period N.

For repetitive (periodic) desired outputs and disturbances

with period N, asymptotic regulation may be achieved by the

controller in several different ways. Among alternatives,

repetitive control based on the internal model principle (Francis

& Wonham, 1975) is most popular, and it has been studied most

extensively. Based on the internal model principle, the feedback

controller for (1) needs the internal model of repetitive signals

for asymptotic regulation of the error. Such a controller may be

represented by

UðzÞ ¼ krz
�NþdAðz�1ÞBuðzÞ
ð1� z�NÞBcðz�1Þb EðzÞ; b> max

ve½0;p�
jBuðe jvÞj2 (6)

where 1/(1 � z�N) is the internal model of repetitive signals.

This is easily understood in view of (4).

Bu(z) in Eq. (6) is not realizable, but Bu(z)z�mu is realizable.

Noting this, a realizable implementation of the repetitive

controller becomes as depicted in Fig. 1.

The following result has been obtained by Tomizuka et al.

(1989).

2.1. Theorem

The feedback system (repetitive control system) consisting

of (1) and (6) is asymptotically stable for 0 < kr < 2, and

asymptotic regulation of the output error is achieved for

repetitive disturbances and reference inputs with period N.

We describe below several aspects of the repetitive control

system, which are important, in particular, from the viewpoint

of applications.

2.2. Stability robustness

The stability condition in the theorem suggests that the

repetitive control system may be robust for parameter variation

by selecting the gain, kr, small. It was, however, noticed at an

early stage of theory development that the stability of repetitive

control systems with the exact internal model of repetitive

signals is not robust in the presence of unmodelled (parasitic)

dynamics. This problem arises due to the nature of the internal

model, i.e. the characteristic roots of the internal model,

1/(1 � z�N), are all on the unit circle, which is the stability

boundary. Another way to interpret this point is the inherent

high gain nature of the repetitive controller; the frequency

response of the internal model goes to infinity at every

repetitive frequency. This problem may be overcome by

introducing a low pass filter in the internal model. The

repetitive controller with a modified internal model is

UðzÞ ¼ krqðz; z�1Þz�NþdþmuAðz�1Þ
ð1� qðz; z�1Þz�NÞBcðz�1Þb ;

b> max
ve½0;p�

jBuðe jvÞj2; qðz; z�1Þ ¼ a1z�1 þ a0 þ a1z

a0 þ 2a1

(7)

Notice that q(z,z�1) is a low pass filter with zero phase

characteristics (Tomizuka, 1987). Notice also that q(z,z�1) is

not realizable, but (7) is realizable as long as N � d � mu>0.

The order of q-filter may be increased by introducing higher

order terms of z and z�1.

If we define the system modeling uncertainty by

rðe� jvÞ ¼ P0ðe� jvÞ � Pðe� jvÞ
P0ðe� jvÞ (8)

where P0(e�jw) represents the nominal dynamics of the system

and P(e�jw) the actual dynamics, q-filter must be selected to

satisfy the following condition for robust stability (Tsao &

Tomizuka, 1994),

1

jrðe� jwÞj � jqðe
jw; e� jwÞj (9)

The q-filter offers robust stability. On the other hand, the

modified internal model is no longer a generator of periodic

signals. Thus, asymptotic regulation does not take place, but for

Fig. 1. Repetitive control system.
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