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a b s t r a c t

Target detection is one of the most important problems in hyperspectral image (HSI) processing.
However, the classical algorithms depend on the specific statistical hypothesis test, and the algorithms
may only perform well under certain conditions, e.g., the adaptive matched subspace detector algorithm
assumes that the background covariance matrices do not include the target signatures, which seldom
happens in the real world. How to develop a proper metric for measuring the separability between
targets and backgrounds becomes the key in target detection. This paper proposes an efficient maximum
margin metric learning (MMML) based target detection algorithm, which aims at exploring the limited
samples in metric learning and transfers the metric learning problem for hyperspectral target detection
into a maximum margin problem which can be optimized via a cutting plane method, and maximally
separates the target samples from the background ones. The extensive experimental results with
different HSIs demonstrate that the proposed method outperforms both the state-of-the-art target
detection algorithms and the other classical metric learning methods.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

The main task of hyperspectral target detection is to decide
whether a target of interest is present or not in each pixel of the
hyperspectral image (HSI) by exploring the spectral signatures
(Manolakis, 2003; Bioucas-Dias et al., 2013). Target detection is also
one of the most important tasks in HSI analysis (Manolakis et al.,
2001; Manolakis and Shaw, 2002; Nasrabadi, 2014). There have
been a number of target detection methods proposed for HSIs.
One of the earliest methods, presented by Harsanyi (1993), is based
on a linear operator that minimizes the total energy in the HSI and
constrains the response of the operator of the signature of interest
to be a constant. This method is the so-called ‘‘constrained energy
minimization’’ (CEM) (Du et al., 2003), and it is especially suitable
in the case of the image background being complicated or very hard
to characterize, because it only needs the knowledge of the desired
target signature (endmember) (Chang, 2005). In addition, Harsanyi
also presented orthogonal subspace projection (OSP) (Chang, 2005;
Matteoli et al., 2011; Harsanyi and Chang, 1994; Chang et al., 1999),
which results from the theory of least squares and has been further
developed in the sensor array processing community. It is believed
that this method is the first approach to separate the desired target

signatures from the undesired target signatures by eliminating the
undesired target signatures prior to the detection of the desired tar-
get signatures, so as to improve the signal detectability (Manolakis
et al., 2003). Furthermore, the CEM algorithm has been extended
into the target-constrained interference-minimized filter (TCIMF)
(Ren and Chang, 2000). The CEM algorithm can accomplish the fol-
lowing two tasks: detection of the desired target and minimization
of the interfering noise, whereas the TCIMF algorithm can also
achieve elimination of the undesired targets (Chang, 2005).

Another kind of approach uses a statistical hypothesis test to dif-
ferentiate the pixels containing the desired targets from those pix-
els that only contain the background spectra. Two good examples of
this approach are the adaptive matched subspace detector (AMSD)
(Manolakis et al., 2001; Kwon and Nasrabadi, 2006) and the adap-
tive cosine/coherence estimator (ACE) (Kraut et al., 2001; Kraut and
Scharf, 1999). The AMSD algorithm is a typical structured back-
ground detector, in which the background spaces are modeled by
a linear subspace approach to describe the pixels in the HSI
(Ientilucci and Schott, 2005). We can also use endmembers to
define the background when the noise variance is unknown. In this
case, the hyperspectral data can be used to estimate the noise vari-
ance, and we then form the detector by generalized likelihood ratio
(GLR) theory (Fowler and Du, 2012; Kim and Hero, 2001). The ACE
algorithm is an unstructured background detector, which assumes
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that the additive noise has been included in the background, and it
is one of the most powerful target detectors for HSIs at this point in
time (Manolakis and Shaw, 2002). Hybrid sub-pixel target detec-
tion methods take advantage of the structured and unstructured
models and have performed well in the circumstance of weak tar-
gets in a complex background (Broadwater and Chellappa, 2007).

Beyond the above classical target detectors which are based on
signal detection theory, recent work has introduced machine learn-
ing theory into the HSI processing field (Yang and Shi, 2014; Zhang
et al., 2015). For example, the linear subspace mixture models can
be easily extended into the nonlinear domain by mapping the input
data into a potentially infinite-dimensional feature space, which
can be efficiently implemented by kernel methods such as the ker-
nel matched subspace detectors (Kwon and Nasrabadi, 2006) and
kernel OSP (Capobianco et al., 2009). The kernel-based methods
try to find a proper measurement for the target detection.
Another important approach drawing great interest is distance
metric learning in the machine learning domain, which also con-
structs a distance measurement to separate the probable targets
from the backgrounds. Distance metric learning methods have
shown promising performance in many tasks, including classifica-
tion (Weinberger et al., 2005; Jiao et al., 2012), recognition
(Chopra et al., 2005; Imani and Ghassemian, 2015), and retrieval
(Hoi et al., 2006; Mountrakis et al., 2011). As we know, the purpose
of classification is to assign all the pixels into various classes, while
target detection is designed to search for the targets of interest, and
can be viewed as a binary classification problem. However, there
are enormous differences between target detection and classifica-
tion, in both the pixel number of the desired targets/classes and
the performance evaluation (Manolakis et al., 2001). The key obsta-
cle that needs to be addressed in target detection is the training
data, especially the desired target signatures, which are very lim-
ited in number in hyperspectral target detection, and they are not
enough for proper metric learning. In order to overcome this prob-
lem and guarantee the meaning of the algorithm, some constraints
should be considered, e.g., pairwise constraints with ‘‘similar’’ or
‘‘dissimilar’’ labels, a non-negative constraint, a positive
semi-definite constraint, and so on.

A number of methods have been previously presented to learn
the distance metrics from data. Xing et al. (2002) focused on the
problem of learning a distance metric to increase the accuracy of
nearest neighbor algorithms, but their method is slow and requires
the solving of a semi-definite programming problem. Another
method (Schultz and Joachims, 2004), defines the relevant distance
constraints and uses the Frobenius inner product as a regularizer.
However, this method is less general than the methods using the
full Mahalanobis matrix, because it assumes that the metric matrix
is diagonal. The large margin nearest neighbor (LMNN) method
(Weinberger et al., 2005; Shen et al., 2010) minimizes the sum of
the distance of the pairs of points so that the neighbors are in the
same class. Neighborhood component analysis (NCA) (Goldberger
et al., 2004) maximizes a random variant of the leave-one-out
k-nearest neighbor (KNN) score on the training samples.

However, to date, few studies have explored distance metric
learning in hyperspectral target detection. Since we know that met-
ric learning has been successfully used in many different domains,
we attempt here to construct a type of distance metric learning for
target detection. In this manuscript, we develop a metric learning
method based on the maximum margin to automatically learn a
Mahalanobis distance metric from the training samples. This dis-
tance metric takes the form of a large number of pairwise con-
straints with ‘‘similar’’ or ‘‘dissimilar’’ labels, and we use the
Frobenius norm of the Mahalanobis metric matrix as a regularizer
(Xiong et al., 2012; Franc and Sonnenburg, 2008; Joachims, 2006).
We then combine the idea of maximum margin metric learning
(MMML) and the conventional target detection algorithms to

improve the separability between the target and background pixels
for target detection. The contributions of this paper can be summa-
rized as:

(1) The MMML algorithm utilizes the maximum margin frame-
work as the objective function for the metric learning, to
learn a subspace which can maximally separate target sam-
ples from background ones, especially when the target sam-
ple number is very small or the targets are difficult to detect.

(2) The proposed MMML method with pairwise constraints. By
using the constrained optimization via the cutting plane
method, our algorithm can improve the calculation efficiency
with a strong generalization ability, and can perform well
without certain assumptions.

(3) Which can be optimized in a constant number of iterations,
has a strong generalization ability.

(4) We creatively combine metric learning with the ACE algo-
rithm by transforming the original space to the
Mahalanobis space with a low dimensionality, which is suit-
able for handling high-dimensional problems and can greatly
enhance the target detection performance.

The rest of the paper is organized as follows. In Section 2, we
describe the proposed MMML algorithm, including the conven-
tional distance metric learning problem, the proposed MMML
method for HSI target detection, and its solution algorithm.
Section 3 details the experiments undertaken to conduct a compar-
ison between the different algorithms with a simulated hyperspec-
tral dataset and two challenging real-world hyperspectral datasets.
Finally, the conclusions are summarized in Section 4. A flowchart of
the MMML algorithm for HSI target detection is shown in Fig. 1. The
input items of the MMML algorithm include both positive samples
(red1 points) and negative samples (green points).

2. The maximum margin metric learning algorithm

In this section, we first introduce metric learning and the max-
imum margin approach, which we use as the objective function
for the metric learning, and we then present how to transfer the
metric learning into such a maximum margin approach. Finally,
we use the cutting plane algorithm to optimize this problem for
obtaining the metric matrix A, and we accomplish the optimization
via a primal sub-gradient method.

2.1. Metric learning

Given a set of training data, ft1; t2; . . . ; tng 2 RL�n where n rep-
resents the number of samples and L is the number of features, we
denote zij as the relationship between the constrained points ti and
tj. Thereafter, we assume that the number of target samples, which
are known as prior positive samples, can be denoted as nþ, and the
number of background samples, which are known as prior negative
samples, can be denoted as n�, in which N ¼ nþ þ n� þm and
n ¼ nþ þ n�, where m denotes the unlabeled samples and N denotes
the total number of the data. We then have a set of must-link con-
straints M and a set of cannot-link constraints C as:

M : 8ðti; tjÞ 2 M; ti; tj 2 same class and zij ¼ 1
C : 8ðti; tjÞ 2 C; ti; tj 2 different class and zij ¼ �1:

ð1Þ

Our goal is to learn the positive semi-definite (PSD) matrix A,
which specifies a Mahalanobis distance metric dðti; tjÞ.
Furthermore, the distance defined by matrix A between ti and tj is:

1 For interpretation of color in Figs. 1, 7, 9 and 12, the reader is referred to the web
version of this article.
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