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a b s t r a c t

The paper presents a new analytical tool to solve the classical photogrammetric bundle block adjustment.
The analytical model is based on the generalized extension of the anisotropic row-scaling Procrustes
analysis, that has been recently proposed by the same authors to solve the image exterior orientation
problem. The main advantage of the method is given by the fact that the problem solution does not
require any approximate value of the unknown parameters, nor any linearization procedure. Moreover,
the algorithm is exceedingly simple to describe and easy to implement. Empirical results indicate that
a zero-information initialization of the iterative relaxation procedure leads almost always to the correct
final least squares solution. Experiments confirm the accuracy of the proposed method, when compared
to the results obtained by applying a classical photogrammetric bundle block adjustment.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Bundle block adjustment is the most classical analytical
problem in photogrammetry. Great effort was given to the problem
solution since the middle of the last century (e.g., Baetsle, 1956;
Brown, 1958; Ackermann, 1962; Cunietti, 1968). An exhaustive
synthesis of the analytical developments carried out in this funda-
mental field of photogrammetry can be found, for instance, in
Triggs et al. (2000). The standard formulation requires the
linearization of the collinearity equations and the satisfaction of
the least squares principle for the equation residuals. Some
additional unknown terms can be considered for each equation
in order to calibrate the camera for some systematic error terms
or for simultaneously estimating the image interior orientation
parameters. Robust least squares solutions have been also
proposed in the literature in order to reduce the influence of
outliers (e.g., Zhang et al., 2006).

According to Triggs et al. (2000), the most significant bundle
block adjustment paradigmatic enhancements in chronological
sequence, are:

1. recursive partitioning by Gyer (1967) and Brown (1968) that led
to the modern sparse matrix techniques;

2. S transformations and criterion matrices by Baarda (1973), that
allowed the correct estimate of the network degrees of freedom
and the uncertainty modeling in the adjustment process;

3. photogrammetric precision and reliability over-parametriza-
tion and model choice by Gruen (1980) and Foerstner (1985),
that opened the way to modern robust statistics and model
selection in photogrammetry;

4. ‘‘geometrically constrained multiphoto and globally enforced
least squares matching’’ by Gruen and Baltsavias (1986), that
introduced the so called image-based matching technique
procedures.

In spite of these fundamental steps in the methodological
development of bundle adjustment, the common underlying
scheme, based on the least-squares solution of a large non-linear
system of equations, has been the same since its origins. In this
paper we propose instead a new analytical bundle block solution
method rooted in the framework of orthogonal Procrustes analysis,
in particular focusing on its generalized anisotropic variant. The
main advantage of the method is that – upon convergence – it
furnishes a least squares solution without any linearization of
the original equations, and without any approximate value of the
unknown parameters and of the tie-points 3-D coordinates.

Recently, the authors of this paper applied the anisotropic
row-scaling Procrustes analysis technique to successfully solve
the exterior orientation problem of one image (Garro et al.,
2012). The process is carried out by an iterative relaxation of the
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unknown translation, rotation and anisotropic scaling of each
image point.

This paper, in particular, extends the same relaxation procedure
by considering also the presence of unknown tie-points imaged to
some or all exposures. Their role is to constraint the different
images one to each other in order to iteratively update their
approximate exterior orientation parameters until a global conver-
gence of the entire block.

The method introduced in this paper represents a further exten-
sion of the generalized (isotropic) Procrustes analysis, already
applied for the least squares registration of photogrammetric 3-D
models (e.g. Crosilla and Beinat, 2002), where just one isotropic
scale factor is required for all the points of the same model.

The new method falls in the wider structure-from-motion
family. Its closest neighbors are the iterative factorization methods
and the global motion-first methods.

Iterative factorization methods (Sturm and Triggs, 1996;
Heyden, 1997; Oliensis, 1999; Oliensis and Hartley, 2007) yield a
projective model from multiple images by a two step iteration (a
block relaxation, in fact), where in one step a measurement matrix,
containing image points coordinates, is factorized with SVD, and in
the subsequent step the depths of the points are computed, assum-
ing all the other parameters fixed. This bears some resemblance of
the scheme described in this paper, which however, deals with
calibrated cameras (i.e., known interior orientation) and outputs
a Euclidean model1 instead of a projective one. Moreover, unlike
these algorithms, our method does not require all points to be visible
in all views.

The issue of visibility in matrix factorization methods can be
side-stepped by matrix completion techniques, exploiting the
low rank of the measurement matrices (Brand, 2002; Kennedy
et al., 2013; Hartley and Schaffalitzky, 2003), or by providing
additional information. Indeed, Kaucic et al. (2001) and Rother
and Carlsson (2002), describe algorithms based on SVD for the
projective modeling from multiple perspective views, based on
having four points on a reference plane visible in all views.
Unlike iterative factorization ones, these algorithms does not
require all points to be visible in all views and are also direct.
If three orthogonal vanishing points are specified in addition,
the model can be upgraded to Euclidean. Hartley and
Schaffalitzky (2003) scheme, in particular, can be contrasted with
ours, since its iteration can be interpreted as linearly solving
alternately for camera matrices and 3D points until their product
converges to the measurement matrix.

Projective methods, though, respond to a practical situation
(i.e., unknown interior orientation), which is different from the
one addressed in this paper. Moreover, we do not put any
constraint on the input (like having four points on a reference
plane visible in all views).

Global motion-first methods share a common scheme: they
start from known interior orientation, compute epipolar or trifocal
geometry which results in relative rotations and relative transla-
tions (up to a scale). Then solve the rotation registration or rotation
averaging (Hartley et al., 2013) problem that gives the rotational
component of the cameras orientation; this problem, if one ignores
outliers, can be solved directly by eigen-decomposition of a matrix
(Martinec and Pajdla, 2007; Arie-Nachimson et al., 2012). Finally,
camera location is solved (a.k.a. translation registration) by a variety
of direct/iterative methods, including solving a linear system of
equations (Kraus, 1997, Section 4.1; Arie-Nachimson et al., 2012;
Jiang et al., 2013), eigen-decomposition (Brand et al., 2004), linear
programming (Moulon et al., 2013), Second Order Cone

programming (Kahl and Hartley, 2008; Martinec and Pajdla,
2007), non-linear least squares (Wilson and Snavely, 2014).

Since some of these methods are direct and the scheme
proposed in this paper is iterative, they can be considered superior
from this point of view. However, they minimize algebraic
residuals, which in certain cases are based only on the orientations
(e.g. Brand et al., 2004), ignoring the 3D points until the final
intersection. On the other hand, our method minimizes a geometric
residual, similarly to photogrammetric bundle block adjustment. As
a matter of fact, the experiments reported show that the method
introduced in this paper achieves RMS error values (wrt. ground
control points) practically equal to those obtained by photogram-
metric bundle block adjustment.

2. Procrustes analysis and photogrammetry

Let us start this section by summarily presenting the main
characteristics of the generalized (isotropic) Procrustes analysis
in Photogrammetry and laser scanning applications. Afterwards,
the anisotropic row-scaling Procrustes analysis will be presented,
and its capabilities to successfully solve the exterior orientation
of one image and the bundle block adjustment problem will be
emphasized.

2.1. Registration of multiple 3-D models

As well known, photogrammetric relative orientation and laser
scanning can provide numerical 3-D models of real objects by sam-
pling the positions of a set of representative surface points.
Depending on the extension and on the shape complexity of the
geometric entity to be surveyed, its complete acquisition often
leads to the creation of a set of partial and independent 3-D
models. These parts must be joined together to reconstruct the
complete object model into a unique frame by matching common
points or features, or by directly aligning portions of corresponding
surfaces.

The registration of multiple 3-D models or n-view registration
problem requires to simultaneously transform into a unique mean
coordinate system a set of m P 2 models, each composed of n
points coordinates in R3 defined in a different reference frame.

If these models are expressed by m n� 3 matrices A1; . . . ; Am,
the problem is equivalent to:

min
Xm

i<j

ðkiAiRi þ 1tT
i Þ � ðkjAjRj þ 1tT

j Þ
��� ���2

F
ð1Þ

where 1 is the all-ones vector and ðki;Ri; tiÞ are the parameters of a
similarity (a.k.a. Helmert) transformation. This is a generalized
(isotropic) Procrustes analysis (GPA) model (Gower, 1975), whose
solution allows to directly register all the 3-D models into a unique
mean reference frame, minimizing a geometric error.

The analogy with the photogrammetric independent models
block adjustment is evident:

� the number of the Ai matrices is equal to the number m of the
models composing the block adjustment. The matrices contain
the coordinates of the available points for each model;
� all matrices Ai have the same dimension, equal to the global

number n of the block adjustment observations by the
coordinate space dimension (usually 3);
� in the case of missing data, the generic matrix Ai has specified

components only for the points belonging to the i-th model,
the other ones being unspecified.

Fig. 1 explains these positions.
1 A projective/Euclidean model differs from the true one by a projectivity/similarity

transformation.
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