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a b s t r a c t

Canonical correlation analysis is an established multivariate statistical method in which correlation
between linear combinations of multivariate sets of variables is maximized. In canonical information
analysis introduced here, linear correlation as a measure of association between variables is replaced
by the information theoretical, entropy based measure mutual information, which is a much more gen-
eral measure of association. We make canonical information analysis feasible for large sample problems,
including for example multispectral images, due to the use of a fast kernel density estimator for entropy
estimation. Canonical information analysis is applied successfully to (1) simple simulated data to
illustrate the basic idea and evaluate performance, (2) fusion of weather radar and optical geostationary
satellite data in a situation with heavy precipitation, and (3) change detection in optical airborne data.
The simulation study shows that canonical information analysis is as accurate as and much faster than
algorithms presented in previous work, especially for large sample sizes. URL: http://www.imm.
dtu.dk/pubdb/p.php?6270
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

In canonical correlation analysis (CCA) first published by Hotell-
ing in 1936 (Hotelling, 1936) linear combinations U ¼ aT X and
V ¼ bT Y of two sets of stochastic variables, k-dimensional X and
‘-dimensional Y, which maximize correlation between U and V
are found. Correlation considers second order statistics of the
involved variables only and as such it is ideal for Gaussian data.
In this paper we investigate replacement of correlation with
mutual information (Hyvärinen et al., 2004; Mackay, 2003;
Bishop, 2007; Canty, 2010) which is a more general, information
theoretical, entropy based measure of association between vari-
ables. Entropy and mutual information (MI) depend on the actual
probability density functions of the involved variables and thus
on higher order statistics. The resulting method is termed canoni-
cal mutual information analysis, or in short canonical information
analysis (CIA).

Since multi-source data, which is typically of different genesis,
often follow very different (non-Gaussian) distributions, the appli-
cation of MI facilitates analysis of such data. In one of our examples
we apply the method to a joint analysis of radar and optical data
(which follow very different distributions thus rendering CCA

non-optimal). Other areas where the method could potentially be
very useful include data of different modalities, for example SAR,
LiDAR, optical and medical data. In general, this type of analysis
has a strong potential for application in data fusion and other fields
of data integration, see also (Ehlers, 1991; Pohl and Van Genderen,
1998; Conese and Maselli, 1993).

Mutual information as a measure of association has previously
proven useful in the context of image registration. Studholme et al.
(1999) proposed a normalized variant of MI for registration of
medical images, which Suri and Reinartz (2010) employ for auto-
matic registration of SAR and optical images. For the purpose of
change detection, Erten et al. (2012) derive an analytical expres-
sion for the mutual information between temporal multichannel
SAR images.

Other dependence measures have been considered in the liter-
ature, such as kernel canonical correlation analysis (kCCA) (Lai and
Fyfe, 2000; Bach and Jordan, 2002). However, while kernel meth-
ods do indeed provide an implicit nonlinear transformation of
the data maximizing some dependence measure, they do not pos-
sess the same qualities as linear methods in terms of interpreta-
tion. Specifically, a linear method, such as CIA, finds the actual
functional relation between the original variables, where a kernel
method, such as kCCA, would find a hidden/intrinsic transforma-
tion which makes the relation between CVs linear. This property
of the linear solution immediately eases interpretation of the
result.
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The idea of maximizing MI between two sets of variables is
mentioned by Bie and Moor (2002). However, the authors only pro-
pose solutions to this problem based on independent component
analysis in the individual spaces of the variables and they do not
provide a truly canonical approach. Yin (2004) and Karasuyama
and Sugiyama (2012) solve the problem of maximizing MI of linear
combinations of variables in a manner which makes its application
to small sample problems feasible. In practical terms the solutions
offered are not applicable to large sample problems including for
example image data. Our fast grid-based entropy estimator (Sec-
tion 5) facilitates the use of CIA to large sample problems. Both
Yin (2004) and Karasuyama and Sugiyama (2012) request orthog-
onality between solutions (as in CCA), whereas we allow for obli-
que solutions (Section 2) via a structure removal procedure
inspired by Friedman’s projection pursuit (Friedman, 1987). The
well known difficulties in estimating and optimizing entropy mea-
sures, will be addressed in Sections 4–6.

Below, Section 2 describes the concept of canonical information
analysis and motivates the following sections. Section 3 describes
the information theoretical concepts entropy of a univariate sto-
chastic variable, joint entropy of two stochastic variables, relative
entropy, and mutual information. Section 4 briefly describes the
estimation of one- and two-dimensional probability density func-
tions, Section 5 describes approximate entropy estimation, and
Section 6 describes the maximization of mutual information of
two linear combinations of stochastic variables. Section 7 gives
(1) a simple, illustrative toy example, (2) a case study with weather
radar data and optical data from a meteorological satellite, and (3)
a case with change detection in optical airborne data. Section 8
concludes. An appendix is included, motivating some of the imple-
mentation choices made. Supplementary material is provided with
additional simulation studies and results from the two case studies
plus an extra application of CIA for change detection.

2. Canonical information analysis

Inspired by canonical correlation analysis (Hotelling, 1936) we
propose a method for maximizing mutual information between
the linear combinations U ¼ aT X and V ¼ bT Y of two sets of sto-
chastic variables, k-dimensional X and ‘-dimensional Y.

The goal of CIA can be stated as

aH; bH ¼ arg max
a;b

IðU;VÞ ð1Þ

where IðU;VÞ is the mutual information between the two linear
combinations U and V which can be defined as

IðU;VÞ ¼ hðUÞ þ hðVÞ � hðU;VÞ ð2Þ

where hðUÞ and hðVÞ are the marginal entropies and hðU;VÞ the
joint entropy. This will be detailed further in Sections 3–5.

Maximization of mutual information is known to be a non-con-
vex optimization problem (Modersitzki, 2004; Haber and
Modersitzki, 2007) wherefore we have conducted experiments
with local as well as global optimization methods, see Section 6.
The inherent lack of certainty of finding a global optimum will
be elucidated by application of the method to different real world
multispectral decomposition problems, see Section 7.

In canonical correlation analysis k and ‘ linear combinations
(components) are determined with the criterion that the i’th com-
ponent maximizes correlation between U and V while being
orthogonal to the first i� 1 components. Friedman (1987) intro-
duced in projection pursuit ‘structure removal’ as the solution to
avoid re-finding a previously found direction in space. Structure
removal works by histogram equalization of the projected data
to a Gaussian distribution and transforming back to the original
space. In CIA we choose to adopt this principle of structure removal

with the modification that the projected data U and V are substi-
tuted with uniformly distributed white noise. This modification
is necessary since, in contrast to projection pursuit, CIA does not
maximize non-Gaussianity of one projection, but rather it maxi-
mizes statistical dependence between two projections. This struc-
ture removal replaces the orthogonality requested by Yin (2004)
and Karasuyama and Sugiyama (2012).

3. Basic information theory

In 1948 Shannon (Shannon, 1948) published his now classical
work on information theory. Below, we describe the information
theoretical concepts entropy and mutual information for discrete
and continuous stochastic variables, see also (Hyvärinen et al.,
2004; Mackay, 2003; Bishop, 2007; Canty, 2010).

3.1. Discrete variables

Consider a discrete stochastic variable X with probability den-
sity function (pdf) pðX ¼ xiÞ; i ¼ 1; . . . ;N. The information content
is defined as � lnðpðX ¼ xiÞÞ. The expectation HðXÞ of the informa-
tion content is termed the entropy of the stochastic variable X

HðXÞ ¼ �
XN

i¼1

pðX ¼ xiÞ lnðpðX ¼ xiÞÞ: ð3Þ

For the joint entropy of two discrete stochastic variables X and Y
we get

HðX;YÞ ¼ �
X

i;j

pðX ¼ xi;Y ¼ yjÞ lnðpðX ¼ xi;Y ¼ yjÞÞ: ð4Þ

3.2. Continuous variables

Probability density functions, information content and entropy
may be defined for continuous variables also. This is necessary to
represent linear combinations of sampled data. In this case the
entropy

hðXÞ ¼ �
Z

pðxÞ lnðpðxÞÞdx ð5Þ

is termed differential entropy. Since pðxÞ here may be greater than
1, hðXÞ in the continuous case may be negative (or infinite).

Empirical entropy ĥðXÞ is an estimator of hðXÞ in (5). The esti-
mator is defined as

ĥðXÞ ¼ � 1
N

XN

i¼1

lnðpðX ¼ xiÞÞ ð6Þ

and as such it is defined over a finite sample fxigN
i¼1 of X, where N is

the number of samples. As opposed to (3) and (4) this estimator is
not based on any binning of the data.

Empirical entropy has previously proven useful for manipulat-
ing entropy measures (Viola, 1995). We have experienced this
experimentally (not shown here) and find this estimator useful
for canonical information analysis.

The extent to which two continuous stochastic variables X and Y
are not independent, which is a measure of their mutual informa-
tion content, may be expressed as the relative entropy or the
Kullback–Leibler divergence between the two-dimensional pdf
pðx; yÞ and the product of the one-dimensional marginal pdfs
pðxÞpðyÞ, i.e.,

DKLðpðx; yÞ; pðxÞpðyÞÞ ¼
Z Z

pðx; yÞ ln pðx; yÞ
pðxÞpðyÞdxdy: ð7Þ

This sum defines the mutual information IðX;YÞ ¼ DKLðpðx; yÞ;
pðxÞpðyÞÞ of the stochastic variables X and Y. Mutual information
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