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a b s t r a c t

In the past 40 years, many spectral vegetation indices have been developed to quantify vegetation bio-
physical parameters. An ideal vegetation index should contain the maximum level of signal related to
specific biophysical characteristics and the minimum level of noise such as background soil influences
and atmospheric effects. However, accurate quantification of signal and noise in a vegetation index
remains a challenge, because it requires a large number of field measurements or laboratory experiments.
In this study, we applied a geostatistical method to estimate signal-to-noise ratio (S/N) for spectral veg-
etation indices. Based on the sample semivariogram of vegetation index images, we used the standard-
ized noise to quantify the noise component of vegetation indices. In a case study in the grasslands and
shrublands of the western United States, we demonstrated the geostatistical method for evaluating S/
N for a series of soil-adjusted vegetation indices derived from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) sensor. The soil-adjusted vegetation indices were found to have higher S/N values
than the traditional normalized difference vegetation index (NDVI) and simple ratio (SR) in the sparsely
vegetated areas. This study shows that the proposed geostatistical analysis can constitute an efficient
technique for estimating signal and noise components in vegetation indices.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

A spectral vegetation index is a non-dimensional measure of
spectral reflectances using an algebraic operation such as ratio, dif-
ference, weighted difference, or normalized difference in two or
more bands to quantify vegetation biophysical characteristics. Vis-
ible and near-infrared (NIR) bands are the most commonly used
wavelengths in development of spectral vegetation indices. A veg-
etation index based on the visible and NIR (VNIR) bands is gener-
ally related to photosynthetically active radiation (PAR) absorbed
by vegetation canopies and is therefore considered a proxy for pho-
tosynthetic activity or vegetation greenness (Gamon et al., 1995;
Myneni et al., 1995; Sellers, 1985).

Since the 1970s, various VNIR-based vegetation indices have
been developed, which can be classified into five general groups:
(1) simple vegetation indices using a ratio, a difference, or a

normalized difference of red and NIR reflectances, for example,
the simple ratio (SR) (Jordan, 1969), the difference vegetation
index (DVI) (Tucker, 1979), and the normalized difference vegeta-
tion index (NDVI) (Rouse et al., 1974); (2) vegetation indices devel-
oped to adjust for the influence of background soil, for example,
the perpendicular vegetation index (PVI) (Richardson and
Wiegand, 1977), the weighted difference vegetation index (WDVI)
(Richardson and Wiegand, 1977), the soil-adjusted vegetation
index (SAVI) (Huete, 1988), the transformed soil-adjusted vegeta-
tion index (TSAVI) (Baret and Guyot, 1991), the modified soil-
adjusted vegetation index (MSAVI) (Qi et al., 1994), the optimized
soil-adjusted vegetation index (OSAVI) (Rondeaux et al., 1996), and
the generalized soil-adjusted vegetation index (GESAVI) (Gilabert
et al., 2002); (3) vegetation indices devised to compensate for
atmospheric effects, such as the atmospherically resistant vegeta-
tion index (ARVI) (Kaufman and Tanré, 1992) and the global envi-
ronmental monitoring index (GEMI) (Pinty and Verstraete, 1992);
(4) vegetation indices combining corrections for both background
soil influence and atmospheric effect, such as the soil atmospheri-
cally resistant vegetation index (SARVI) (Kaufman and Tanré,
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1992), the modified normalized difference vegetation index
(MNDVI) (Liu and Huete, 1995), the enhanced vegetation index
(EVI) (Huete et al., 2002), and the two-band enhanced vegetation
index (EVI2) (Jiang et al., 2008); (5) vegetation indices designed
to increase the index’s linearity with biophysical parameters, for
example, the nonlinear vegetation index (NLI) (Goel and Qi,
1994), the renormalized difference vegetation index (RDVI)
(Roujean and Breon, 1995), the modified simple ratio (MSR)
(Chen, 1996), the green normalized difference vegetation index
(GNDVI) (Gitelson et al., 1996), the green atmospherically resistant
vegetation index (GARI) (Gitelson et al., 1996), the wide dynamic
range vegetation index (WDRVI) (Gitelson, 2004), the linearized
vegetation index (LVI) (Ünsalan and Boyer, 2004), and the linear-
ized normalized difference vegetation index (LNDVI) (Jiang and
Huete, 2010). In addition to the VNIR-based indices, indices using
longer wavelengths (e.g., shortwave infrared) and narrow bands
derived from hyperspectral sensors are also widely used.

An ideal vegetation index should meet two criteria. First, the
index should be sensitive to the ‘‘signal’’ of a given biophysical
parameter such as leaf area index, green vegetation fraction, PAR,
or leaf chlorophyll concentration. Moreover, the index’s sensitivity
to signal should be consistent over the entire range of the biophys-
ical parameter, requiring that the index not saturate for dense veg-
etation cover. Second, the index should be insensitive to ‘‘noise’’
such as the effects of background soil, atmosphere, canopy struc-
ture, sun-target-sensor geometry, and ground topography.

Evaluation and comparison of various vegetation indices have
received great attention in the remote sensing community (e.g.,
Bannari et al., 1995; Gong et al., 2003; Xu et al., 2003; Silleos
et al., 2006; Ji and Peters, 2007; Jiang and Huete, 2010). Some basic
statistical techniques, such as correlation, regression, and analysis of
variance, are useful in evaluating vegetation indices (e.g., Lawrence
and Ripple, 1998; Purevdorj et al., 1998; Gong et al., 2003;
Haboudane et al., 2004). To specifically estimate the signal and noise
of a vegetation index, investigators devised several statistical metrics
including the relative equivalent noise (Baret and Guyot, 1991), the
vegetation equivalent noise (Huete et al., 1994), and the sensitivity
function (Ji and Peters, 2007). These metrics, despite their different
forms, can quantify the signal and noise components for a vegetation
index based on the statistical relationship of the index to a biophys-
ical variable. However, these methods for estimating signal and
noise components require field-based measures of biophysical
parameters, laboratory experiments, or model simulations.

Because a vegetation index consists of both desired signals and
unwanted background noise, evaluation of a vegetation index can
be simplified into an estimation of signal-to-noise ratio (S/N). In
the remote sensing area, Smith and Curran (1999) summarized sev-
eral image-based S/N evaluation methods: the homogeneous area
method, the nearly homogeneous area method, the geostatistical
method, the homogeneous block method, and the multiple wave-
band method. The geostatistical method was proposed by Curran
and Dungan (1989) and later adapted or modified by Eklundh
(1995), Atkinson et al. (1996), Atkinson (1997), Chappell et al.
(2001), Foody et al. (2004), Atkinson et al. (2005), Atkinson et al.
(2007), Guo and Dou (2008), Asmat et al. (2010), and others. The
geostatistical method has been applied to estimate S/N of airborne
and satellite images. For example, Curran and Dungan (1989) used
this method to estimate S/N for the Airborne Visible/Infrared Imag-
ing Spectrometer (AVIRIS) data; Eklundh (1995), Chappell et al.
(2001) performed S/N analysis for Advanced Very High Resolution
Radiometer (AVHRR) NDVI data; Atkinson et al. (2005), Asmat
et al. (2010) evaluated image noise for the hyperspectral images
derived from Compact Airborne Spectrographic Imager; and Guo
and Dou (2008) applied a modified geostatistical method to estimate
S/N for the visible and infrared data acquired from China-launched
FY-2 geostationary meteorological satellite series.

Although the geostatistical method has been used to estimate S/
N of remotely sensed images, vegetation indices are different from
regular images where each pixel records a brightness value that
can be further converted to radiance or reflectance. The magnitude
and sign of a vegetation index are normally irrelevant to the signal
strength but are functions of land surface characteristics such as
land cover types, vegetation density and condition, and soil prop-
erties. Therefore, not all the geostatistical metrics previously devel-
oped are suitable for vegetation indices. In this study, we applied
the existing geostatistical techniques and proposed a procedure
for estimating and comparing S/N values of different vegetation
indices. In a case study in the grasslands and shrublands in the
western United States we used several vegetation indices derived
from the Moderate Resolution Imaging Spectroradiometer (MODIS)
data to demonstrate the effectiveness of our proposed S/N estima-
tion method.

2. A brief review of geostatistical methods for S/N estimation

S/N in electronics is defined as a measure of signal strength
relative to background noise. S/N can be expressed using different
formulas because signal and noise can be defined in different ways
(Schowengerdt, 1997). The most common definition of S/N in
image processing is given by

S=Nvar ¼
r2

signal

r2
noise

ð1Þ

where r2
signal and r2

noise are the variances of signal and noise, respec-
tively (Schowengerdt, 1997). The geostatistical estimation of S/N
was developed based on the concept of the semivariogram, a key
function in geostatistics. The sample semivariogram is defined as

cðhÞ ¼ 1
2mðhÞ

XmðhÞ
i¼1

½zðxiÞ � zðxi þ hÞ�2 ð2Þ

where z(xi) is the value of a pixel location (xi), h is the lag distance
between pairs of pixels, m is the numbers of pairs of pixels at lag h,
and c(h) is the estimate of the semivariogram at lag h (Isaaks and
Srivastava, 1989). For semivariogram, there is an intrinsic stationa-
rity assumption that the mean is a constant and the variance of the
difference is the same everywhere in the region of interest. The
sample semivariogram usually displays a characteristic shape,
increasing from smaller to larger lags. The shape of a sample semi-
variogram is characterized by three parameters: sill variance (c),
range (a), and nugget variance (c0). In general, a semivariogram
c(h) increases with large lags and levels off asymptotically. The
semivariogram c(h) value and the lag h value at the asymptote
are referred to as sill variance (c) and range (a), respectively. The
nugget variance is the c(h) value when the lag h is zero. Ideally,
c0 = 0 for h = 0, but in reality, data noise or measurement error
can cause a discontinuity at the origin of the semivariogram result-
ing in a positive nugget variance (Isaaks and Srivastava, 1989;
Schowengerdt, 1997). A sample semivariogram can be fitted by a
mathematical model, such as nugget effect model, spherical model,
exponential model, and Gaussian model, to determine the semivari-
ogram parameters c, a, and c0. A complicated semivariogram model
may contain two or more nested structures that combine multiple
mathematical models (Isaaks and Srivastava, 1989).

The use of the nugget variance to estimate random noise for
images was proposed by Curran and Dungan (1989). They justified
this method by these two arguments: (1) the variance of an image
is the sum of signal variance (or underlying variance) and the noise
variance, and (2) when the lag approaches zero, the signal variance
will be nearly zero, so the semivariogram of the image will consist
of nearly pure noise variance. Curran and Dungan (1989) defined S/
Nmean as
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