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a b s t r a c t

Cyanobacterial blooms in water supply sources in both central Indiana USA (CIN) and South Australia (SA)
are a cause of great concerns for toxin production and water quality deterioration. Remote sensing pro-
vides an effective approach for quick assessment of cyanobacteria through quantification of phycocyanin
(PC) concentration. In total, 363 samples spanning a large variation of optically active constituents (OACs)
in CIN and SA waters were collected during 24 field surveys. Concurrently, remote sensing reflectance
spectra (Rrs) were measured. A partial least squares–artificial neural network (PLS–ANN) model, artificial
neural network (ANN) and three-band model (TBM) were developed or tuned by relating the Rrs with PC
concentration. Our results indicate that the PLS–ANN model outperformed the ANN and TBM with both
the original spectra and simulated ESA/Sentinel-3/Ocean and Land Color Instrument (OLCI) and EO-1/
Hyperion spectra. The PLS–ANN model resulted in a high coefficient of determination (R2) for CIN dataset
(R2 = 0.92, R: 0.3–220.7 lg/L) and SA (R2 = 0.98, R: 0.2–13.2 lg/L). In comparison, the TBM model yielded
an R2 = 0.77 and 0.94 for the CIN and SA datasets, respectively; while the ANN obtained an intermediate
modeling accuracy (CIN: R2 = 0.86; SA: R2 = 0.95). Applying the simulated OLCI and Hyperion aggregated
datasets, the PLS–ANN model still achieved good performance (OLCI: R2 = 0.84; Hyperion: R2 = 0.90); the
TBM also presented acceptable performance for PC estimations (OLCI: R2 = 0.65, Hyperion: R2 = 0.70).
Based on the results, the PLS–ANN is an effective modeling approach for the quantification of PC in pro-
ductive water supplies based on its effectiveness in solving the non-linearity of PC with other OACs. Fur-
thermore, our investigation indicates that the ratio of inorganic suspended matter (ISM) to PC
concentration has close relationship to modeling relative errors (CIN: R2 = 0.81; SA: R2 = 0.92), indicating
that ISM concentration exert significant impact on PC estimation accuracy.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

As population growth continues to place increasing demand on
drinking water supplies, resource managers urgently need better
assessment tools to protect and maintain the quantity and quality
of our drinking water sources (Li et al., 2010; Song et al., 2012a).
Unpleasant and sometimes harmful cyanobacterial blooms
degrade water quality due to the production of surface scums,
toxin, and earthy compounds affecting the water taste and odor
(Codd et al., 2005; Paerl and Paul, 2012). Monitoring programs to
track cyanobacterial blooms and the conditions conducive to

bloom formation are often limited to a small number of stations
that are sampled infrequently (Hunter et al., 2009; Guanter et al.,
2010). Although water supply sources have been studied inten-
sively (Randolph et al., 2008; Gitelson et al., 2008; Song et al.,
2012a), water resource managers lack a powerful assessment tool
capable of providing timely information on the spatial distribution
and concentration of algal communities (Hunter et al., 2009; Li
et al., 2010). This study will address this practical need by demon-
strating that remote sensing techniques can provide a fast and effi-
cient method for determining the intensity of cyanobacterial
blooms (Randolph et al., 2008; Hunter et al., 2009, 2010).

Cyanobacterial growth is dependent on temperature, light, and
nutrient availability and is often associated with eutrophication
(Codd et al., 2005; Guo, 2007; Paerl and Paul, 2012), which is a
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natural process hastened by anthropogenic activity (Chorus and
Bartram, 1999; Paerl and Paul, 2012). As nitrogen and phosphorus
levels increase in water bodies, the conditions become more con-
ducive for cyanobacterial blooms (Codd et al., 2005; Tedesco and
Clercin, 2011, Paerl and Paul, 2012). Current monitoring practices
often involve widely dispersed station sampling and laboratory
analysis (Simis et al., 2005; Paerl and Paul, 2012). The ephemeral
nature of algal blooms makes effective monitoring in this manner
difficult (Gons et al., 2008; Hunter et al., 2010). Remote sensing
offers an alternative to minimal station monitoring by providing
a synoptic view of the target feature (Gons et al., 2008; Hunter
et al., 2010). It is widely accepted that remote sensing can be used
as a powerful tool for monitoring the spatiotemporal dynamics of
chlorophyll-a (Chl-a) (Gons et al., 2008; Yang et al., 2011; Moses
et al., 2012). Phycocyanin (PC), a pigment unique to cyanobacteria,
demonstrates a diagnostic spectral absorption in freshwater sys-
tems based on its diagnostic spectral band located around
620 nm, including the maximum absorption of a number of modi-
fications of PC (Dekker 1993; Ruiz-Verdú et al., 2007), which makes
the remote detection of cyanobacteria possible (Dekker, 1993;
Schalles and Yacobi, 2000; Simis et al., 2005; Song et al., 2012b).

Multiple algorithms have been developed to estimate PC con-
centrations using remotely sensed data. These include the models
created by Dekker (1993), Schalles and Yacobi (2000) based on
empirical algorithms and the semi-analytical algorithm developed
by Simis et al. (2005, 2007). A better understanding of water qual-
ity constituents that impact the PC concentration estimation
derived from algorithms is necessary to improve their predicative
capabilities and utility to water resource managers. Currently, only
a few successful studies have used multi- and hyper-spectral
remote sensing to map PC concentrations in inland waters
(Vincent et al., 2004; Hunter et al., 2010; Guanter et al., 2010;
Song et al., 2012b). Simis et al. (2005) developed an optical model
for determining this ancillary pigment abundance using the optical
properties of PC along with the attenuation and backscattering of
other optically active constituents (OACs) presented in turbid
inland waters. This algorithm was developed using a portable
spectroradiometer (Photoresearch, PR-650) to accommodate other
remote sensing platforms (e.g., the MEdium Resolution Imaging
Spectrometer, MERIS). Investigations have been made to apply
MERIS satellite data to monitor PC concentrations in inland waters
(Guanter et al., 2010; Matthews et al., 2010).

Investigations have proved that the accuracy of the remote esti-
mation of Chl-a for inland turbid productive water is strongly influ-
enced by nonalgal particles and colored dissolved organic matter
(CDOM) (Schalles and Yacobi, 2000; Gitelson et al., 2008;
Gilerson et al., 2010; Yang et al., 2011). The package effects and
impact from ancillary pigments are also factors that influence
Chl-a estimates (Babin et al., 2003). Compared to Chl-a, PC demon-
strates even weaker absorption, which makes it even more chal-
lenging for remote estimation (Simis et al., 2005). Nonlinearity is
the major issue for PC estimation using remotely sensed data
(Ruiz-Verdú et al., 2007; Randolph et al., 2008). Water quality
remote-sensing algorithms basically employ upwelling radiance
or remote sensing reflectance (input) to retrieve water quality
parameters (output). Algorithm development can be regarded as
a regression problem where once the functional form of the algo-
rithm is determined, the parameters of the function are derived
from a set of input–output pairs (D’Alimonte et al., 2003; Bricaud
et al., 2007; Song et al., 2013). The pairs are affected by the training
dataset range and representative values for model performance.

The interactions between PC, non-algal particles (dominated by
suspended mineral particles), and other ancillary pigments have
restricted the development of empirical algorithms to specific
regions, due to the nonlinearity of various water constituents
(Ruiz-Verdú et al., 2007; Hunter et al., 2010; Yang et al., 2011;

Song et al., 2014). An adaptive model based upon spectral variables
derived from in situ reflectance was developed with a partial least
squares-artificial neural network (PLS–ANN) based on the PC diag-
nostic spectral band or band ratios (Song et al., 2014), which shows
potential for total suspended matter (TSM) and total phosphorus
estimation with both in situ and airborne imaging data (Song
et al., 2012a, b). Our research will address this technical needs
for effective remote sensing of PC concentration by demonstrating
the PLS–ANN performance and testing the applicability of the
semi-empirical algorithms developed by Dall’Olmo and Gitelson
(2005) for Chl-a estimates in turbid inland waters, which has a
potential applicability to PC inversion (Guanter et al., 2010; Song
et al., 2012b) for inland productive waters. The objectives are two-
fold: (1) to examine the PLS–ANN model for PC estimates using
in situ collected spectral data and satellite-borne sensor simulated
spectra, e.g., Sentinel-3/OLCI scheduled launching in 2015 and EO-
1/Hyperion, in comparison with an ANN and a semi-empirical
model adapted from three-band model (TBM); and (2) to examine
the major optically active constituents (OACs) that confound the
PC estimates for productive drinking water sources.

2. Materials and methods

2.1. Study sites

The Eagle Creek (ECR: 86�18013.0700 W, 39�51009.8400N; surface
area (A) = 5.0 km2; depth (Z) = 4.2 m), Morse (MR: 86�2017.2200W,
40�6016.8400N; A = 6.0 km2; Z = 4.7 m) and Geist reservoirs (GR:
85�57047.2200W, 35�56016.8400N; A = 7.5 km2; Z = 3.2 m) in central
Indiana (CIN) are the major drinking water sources for over
900,000 residents of the Indianapolis metropolitan region. The long
water residence time and a high percentage of agricultural land use
(ECR: 60.1%, MR: 76.9%, and GR: 60.5%) in the watersheds (Li et al.,
2010) contribute to the high nitrogen and phosphorus loading of
these reservoirs with a mean total phosphorus and total nitrogen
concentration of 94 lg P/L and 1.47 mg N/L, respectively. The occur-
rence of nuisance algal blooms impairs the water quality in three
reservoirs every summer (Tedesco and Clercin, 2011). From June
2007 to November 2010, five, six, and seven field surveys were con-
ducted across the MR, GR, and ECR, respectively, and overall, 18 field
surveys were conducted (see supplementary Table 1).

The dataset for South Australia (SA) was collected from three
study sites. Myponga Reservoir (MPR) is an inland water body
(138�26013.2900E, 35�24010.0200S; A = 2.8 km2; Z = 21.5 m) located
approximately 60 km south of Adelaide, which provides approxi-
mately 5% of the potable water for Adelaide. Murray River at Man-
num (MRM) is situated on the broad reaches of the Lower Murray
channel (139�19033.2200E, 34�44055.1100S; Z = 5.6 m), where a main
pumping station is sited to supply water to Adelaide. The Murray
River at Wellington (MRW) is connected with Alexandrina Lake
(139�27033.1100E, 35�23055.1900S; Z = 5.3 m), serving as a major
water supply source for Adelaide through pumping station. Six
field surveys were conducted over three potable water sources
from February to March 2009 (see supplementary Table 1).

2.2. In situ data collection

The Secchi disk depth (SDD) was collected at each site to deter-
mine water transparency. The following physical parameters were
measured at each sampling station using YSI 600XLM-SV multi-
parameter probes (YSI, Yellow Springs, Ohio, USA) positioned
0.5 m below the water surface: temperature (�C), turbidity (NTU)
and pH. The coordinates were recorded at each station using a
GPS unit. Surface water grab samples were collected at each station
at approximately 0.5 m below the water surface for laboratory
analysis.
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