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a b s t r a c t

This paper presents a global plane fitting approach for roof segmentation from lidar point clouds. Starting
with a conventional plane fitting approach (e.g., plane fitting based on region growing), an initial segmen-
tation is first derived from roof lidar points. Such initial segmentation is then optimized by minimizing a
global energy function consisting of the distances of lidar points to initial planes (labels), spatial smooth-
ness between data points, and the number of planes. As a global solution, the proposed approach can
determine multiple roof planes simultaneously. Two lidar data sets of Indianapolis (USA) and Vaihingen
(Germany) are used in the study. Experimental results show that the completeness and correctness are
increased from 80.1% to 92.3%, and 93.0% to 100%, respectively; and the detection cross-lap rate and
reference cross-lap rate are reduced from 11.9% to 2.2%, and 24.6% to 5.8%, respectively. As a result,
the incorrect segmentation that often occurs at plane transitions is satisfactorily resolved; and the topo-
logical consistency among segmented planes is correctly retained even for complex roof structures.
� 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.

1. Introduction

Building roof reconstruction is of a current research interest in
3D city modeling. Because of being able to directly collect dense,
accurate 3D point clouds of urban objects, lidar (Light Detection
and Ranging) technology provides an efficient solution to this need.
Reported methods for building roof reconstruction mostly fall into
two categories: data-driven (bottom–up) and model-driven (top–
down). In terms of data-driven methods, a common assumption
is that a building is a polyhedron consisting of planes and edges.
As a crucial step, the point clouds of a building are usually seg-
mented into disjointed planar regions. Subsequent tasks, including
roof edge extraction and topologic reconstruction, are dependent
on the quality of segmentation. A poor segmentation may make
these tasks fail. As for model-driven methods, a building is
assumed to be an assembly of roof primitives (e.g., gable roof
and hipped roof), which and whose topology are predefined in a
model library (Tarsha-Kurdi et al., 2007a; Huang et al., 2013).
However, roof segmentation is still a required step in many model-

driven methods, such as the graph matching approach (Verma
et al., 2006; Oude Elberink and Vosselman, 2009). A poor segmen-
tation may alter the topology among roof planes and make the
matching task fail (Oude Elberink and Vosselman, 2009).

Building roof segmentation can be accomplished via various
approaches, such as data clustering, region growing, energy
minimization, and model fitting. A review of these approaches
can be found in (Awwad et al., 2010; Sampath and Shan, 2010). Data
clustering is basically a statistical technique that classifies the point
clouds into primitives based on certain pre-calculated local surface
properties or features. Filin and Pfeifer (2006) propose a slope adap-
tive neighborhood for such calculation. Considering the variations
in local point density, Sampath and Shan (2010) use the Voronoi
neighborhood to estimate the local surface properties, whereas
Lari et al. (2011) use a cylindrical neighborhood for this purpose.
As for clustering the feature vectors, mode-seeking (Filin and
Pfeifer, 2006), conventional mean-shift (Melzer, 2007), and fuzzy
k-means (Sampath and Shan, 2010) are applied. In spite of the pop-
ularity and efficiency of this approach, it suffers the difficulty in
neighborhood definition and is sensitive to noise and outliers.

Region growing is a region-based segmentation method that
partitions point clouds into disjoint homogenous regions. It starts
with a selected seed point or region and expands to its neighboring
points. Gorte (2002) selects the triangles in triangulated irregular
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networks (TINs) as seed regions and extends them to neighboring
triangles. Zhang et al. (2006) perform a local plane fitting at points
and select the points with good planarity as seed points. To obtain
robust seed points, Chauve et al. (2010) develop an iterative
Principal Component Analysis (PCA) to estimate local planarity.
You and Lin (2011) present a non-iterative approach using tensor
voting for this purpose. Unlike the aforementioned approaches,
Dorninger and Pfeifer (2008) determine seed clusters (regions) by
a hierarchical clustering approach. As for expanding seed regions,
similarity measures such as distances of points to planes (Zhang
et al., 2006; Dorninger and Pfeifer, 2008; Chauve et al., 2010) and
angle differences between normal vectors (Dorninger and Pfeifer,
2008; Chauve et al., 2010; You and Lin, 2011) are used. Neverthe-
less, region growing is susceptible to the selection of seed regions
(Awwad et al., 2010) and difficult to stop when transitions
between two regions are smooth (Sampath and Shan, 2010).

The energy minimization approach is a global solution that
formulates the segmentation as an optimization problem. Its
objective function may consist of fidelity to data, continuity of fea-
ture values and compactness of segment boundaries (Kim and
Shan, 2011; Vitti, 2012). A widespread application of this approach
to image segmentation can be found in (Vitti, 2012). As for the seg-
mentation of lidar data, multiphase level set approach is adopted
to segment planar roof primitives under an energy minimization
formulation (Kim and Shan, 2011). Compared to the RANSAC
(RANdom SAmple Consensus, Fischler and Bolles, 1981) based
approaches, it is global and multiple roof planes can be segmented
at one time. However, a common shortcoming of this approach is
that poor segmentation may occur when the energy function
converges to a local minimum.

Since the reconstructed models are dependent on the robust
estimate at planar primitives, robust model fitting methods such
as RANSAC and Hough transform (Duda and Hart, 1972) are also
applied to roof segmentation. Lidar points that fit a mathematical
plane with most inliers are first extracted and regarded as a planar
segment. This approach is robust to noise and outliers, but it tends
to result in spurious planes (Tarsha-Kurdi et al., 2007b; Yan et al.,
2012). With the help of available building ground plans, Vosselman
and Dijkman (2001) split the dataset into small parts before apply-
ing Hough transform to prevent the detection of spurious planes.
Some extended RANSAC considering local surface normals (Bretar
and Roux, 2005; Schnabel et al., 2007; Awwad et al., 2010; Chen
et al., 2012) are also developed for this purpose. Considering spatial
connectivity, Zhang et al. (2006) and Chauve et al. (2010) combine
model fitting and region growing. Nevertheless, most of the model
fitting approaches are order-dependent and based on a single-
model. Segmentation results are dependent on the order in which
the planes are extracted. When multiple planes are present, each
plane instance needs to be sequentially extracted. As a result,
points at transitions between roof faces will be assigned to the first
extracted planes. In most cases, this approach performs well with
some additional constraints. However, for complex roof structures
it tends to result in mistakes, such as spurious planes (segments
that do not exist in reality), over-segmented planes (one actual
plane is segmented into multiple segments), and under-segmented
planes (multiple actual planes are segmented into one segment).

To overcome these problems, this paper seeks a global optimi-
zation solution to the problem of roof segmentation from airborne
lidar point clouds. A multi-label (plane) optimization approach is
introduced for this purpose. It intends to reduce the number of
mistakes derived from a plane fitting based on region growing
and to improve the topological consistency among segmented
planes. In our study, the point clouds of building roofs are first
extracted from airborne lidar data. Starting with initial planes
derived from a plane fitting approach, a global energy function
consisting of fidelity to data, spatial smoothness, and the number

of models (i.e., the number of planes) is constructed to optimize
the segmented planes. Comparing to existing approaches, the pro-
posed method incorporates spatial smoothness between data
points into plane fitting. It can produce spatially coherent seg-
ments and improve the segmentation quality. Additionally, the
proposed approach is global, i.e., multiple roof planes are deter-
mined at the same time and their corresponding model parameters
can be refined when minimizing the energy function. It yields both
high completeness and high correctness rates. More noticeably, the
incorrect segmentation that often occurs at plane transitions is
satisfactorily avoided and the topological consistency among
segmented planes is correctly retained.

The remainder of the paper is structured as follows. Section 2
formulates the segmentation task as a multi-label (plane) optimi-
zation problem and presents a graph cuts based global solution.
Section 3 starts with the test data description, followed by a
presentation of individual and overall test results to demonstrate
the solution procedure. Assessment and discussion constitute Sec-
tion 4, where we define our quality metrics, examine the sensitiv-
ity of the solution to relevant parameters, and assess the metric
quality and topologic quality of the segmentation outcome. Both
quantitative and qualitative evaluations are presented. Section 5
consists of our concluding remarks on the properties of the method
and future effort.

2. Multi-label optimization

2.1. Formulation

The segmentation task can be noted as a labeling problem and
formulated in terms of energy minimization. Eq. (1) provides such
a formulation (Delong et al., 2012; Isack and Boykov, 2012)
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X
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where L is a given set of labels (planes) and d(.) is an indicator
function. Let P represent a set of data points, the multiple labeling
task is to assign a point p � P a label Lp � L such that the labeling
L minimizes the energy E(L), where L0 is the set of labels appearing
in L and N is an assumed neighborhood for data points. Three energy
terms are considered in the energy formula. The data cost term (the
first term in Eq. (1)) measures the discrepancy between data points
and labels. It is the sum of the distances of points to their assigned
labels. The smooth cost term (the second term in Eq. (1)) measures
the label inconsistency between neighboring points. It is the sum of
weight wpq of each pair of neighboring points p and q that are
assigned to different labels. The label cost term (the third term in
Eq. (1)) measures the number of labels appearing in L. It is the
sum of the label cost hl of each label l � L0. Fig. 1 illustrates a labeling
of data points and their fitted lines. Two lines A and B are fitted to

Fig. 1. Labeling of data points and their fitted lines. The double-arrowed lines link
each pair of neighboring points. Data points and their corresponding fitted lines are
shown with the same shade.
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