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a b s t r a c t

In this article we analyze the response of Time-of-Flight (ToF) cameras (active sensors) for close range imag-
ing under three different illumination conditions and compare the results with stereo vision (passive) sen-
sors. ToF cameras are sensitive to ambient light and have low resolution but deliver high frame rate accurate
depth data under suitable conditions. We introduce metrics for performance evaluation over a small region
of interest. Based on these metrics, we analyze and compare depth imaging of leaf under indoor (room) and
outdoor (shadow and sunlight) conditions by varying exposure times of the sensors. Performance of three
different ToF cameras (PMD CamBoard, PMD CamCube and SwissRanger SR4000) is compared against
selected stereo-correspondence algorithms (local correlation and graph cuts). PMD CamCube has better
cancelation of sunlight, followed by CamBoard, while SwissRanger SR4000 performs poorly under sunlight.
Stereo vision is comparatively more robust to ambient illumination and provides high resolution depth data
but is constrained by texture of the object along with computational efficiency. Graph cut based stereo cor-
respondence algorithm can better retrieve the shape of the leaves but is computationally much more expen-
sive as compared to local correlation. Finally, we propose a method to increase the dynamic range of ToF
cameras for a scene involving both shadow and sunlight exposures at the same time by taking advantage
of camera flags (PMD) or confidence matrix (SwissRanger).
� 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.

1. Introduction

In agricultural automation, 2D imaging has addressed a variety
of problems, ranging from weed control (Slaughter and Giles, 2008)
and disease detection (Garcia et al., 2013) to yield estimation
(Nuske et al., 2011), inter-plant space sensing (Tang and Tian,
2008) and structural analysis (McCarthy, 2009), to name a few.
But most of these tasks are either large scale analysis or they tend
to deal with simpler plant canopies, for example, at early growth
stages (Astrand and Baerveldt, 2004). The reason is obvious; when
looking inside plant canopy, 2D imaging is not robust to occlusion
of plant organs such as overlapping leaves and branches.

To address this problem, 3D imaging is a common solution.
Among the most noticeable applications of 3D vision are the
construction of dense models for simulation of plant structures
(Takizawa et al., 2005) and for estimating 3D properties of plant
canopies (Chapron et al., 1993; Preuksakarn and Boudon, 2010;

Santos and Oliveira, 2012). If not obvious, then at least an ambig-
uous difference between the application domains of 2D and 3D
imaging in agriculture can be observed. 2D has been successfully
applied for outdoor and 3D for indoor applications and large scale
analysis in outdoor scenario such as navigation in the field (Kise
and Zhang, 2008).

The reason for this gap is threefold; firstly, plants have compli-
cated free form, non-rigid structures that cannot be approximated
by simple geometrical shapes making it necessary to observe min-
ute details and hence placing stringent demands on the quality and
the efficiency of 3D imaging technology. Secondly, the huge varia-
tions in outdoor illumination (sunny, partially cloudy, overcast,
shadow), which can change the perceived shape of objects to a
large extent and that even constrains 2D imaging. Thirdly, the
technology for 3D data acquisition is largely designed for indoor
applications and exporting it to outdoor scenario either limits the
scope or makes the system too complex to be practical. For exam-
ple, (Biskup et al., 2007) used stereo vision for only measuring leaf
inclination for outer leaves of plant canopies under outdoor light-
ing and (Nakarmi and Tang, 2010) used a ToF camera for plant
space measurement covering the view from sunlight otherwise
the sensor saturates. In general, any such approach for 3D analysis
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is focused at a particular application and cannot be easily adapted
for obtaining slightly different measurements.

Evenafter all theshortcomings, 3D sensing isvital.Plant phenotyp-
ing facilities require accurate depth measurements of plant organs
(such as, leaf count/angles/areas, plant height or sampling points on
specific sections of a plant) either for classification of large varieties
of plants produced due to experimental variations of environmental
factors (Van der Heijden et al., 2012) or robotic manipulation such
as for measuring chlorophyll content in leaves (Alenya et al., 2011)
or automated fruit picking (Jimenez et al., 2000). In field operations,
it has great potential in precision agriculture for reducing the amount
of herbicides as 3D data can help in not just improved recognition and
localization of weeds by resolving occlusion but also in estimation of
volume of the infestation, thereby enabling deployment of optimal
amounts of chemicals (Nielsen et al., 2004;(Kazmi et al., 2011).

Recently, Fiorani et al. (2012) discussed state-of-the-art tech-
nologies in use for biological imaging and pointed out that in depth
knowledge is required regarding physics of the sensors and param-
eters of software/algorithms used in order to benefit optimally.
This is a bottleneck in agricultural automation because the objects
(plants) pose one of the most demanding tests to image acquisition
and machine vision. Systems optimized for man made structured
environments are not optimal for the natural setup of agriculture.
Limitations of imaging system combined with environmental fac-
tors make agricultural imaging a complex puzzle to solve. There-
fore, it is important to segregate environmental factors and
evaluate the sensor performance w.r.t to each one, individually.

One of the most important factors is light, both indoor and out-
door. Lighting must be diffused to reduce errors. Under outdoor
conditions, various shading arrangements have been used to cater
for this or else experiments are performed on days with overcast
(Frasson and Krajewski, 2010). But the problem arises when intro-
ducing a shade makes the system either too complicated, such as,
in weed detection (Piron et al., 2011) or sunlight is unavoidable, for
example, to understand the effect of lighting variations on the
plant canopies (Van der Zande et al., 2010), to track the diurnal/
nocturnal movement of the leaves (Biskup et al., 2007) or with
changing positions of the sun (Van Henten et al., 2011). In such
cases, the exposure of the 3D imaging system must be either robust
to variation in ambient illumination or at least tangible, somehow.
The effect of ambient illumination on the camera response varies
with the type of sensor used.

1.1. Common 3D data acquisition techniques and challenges

The most widespread method of acquiring 3D data is stereo vi-
sion. But it has a big set of problems. Stereo correspondence and
depth accuracy vary with the type of algorithm used. Local corre-
spondence algorithms are efficient but less accurate than global
ones which could be, computationally, very expensive. Besides,
performance is adversely affected by lack of surface texture of
the object and specular highlights.

Among the active sensing technologies, structured light projec-
tion and laser range scanners are used for creating accurate and
detailed 3D models, but such systems are usually expensive and
complex. On the other hand, structured light has interference
issues under sunlight and laser scanners include mobile parts that
cause longer imaging times. Although, new low cost versions of
structured light cameras have recently appeared, they still offer
low resolution and are highly sensitive to outdoor lighting (such
as RGBD cameras e.g. Microsoft Kinect3).

On the other hand, recent advances in the ToF based range
sensors have revolutionized the industry and several brands of

off-the-shelf 3D cameras are available in the market. They use near
infrared (NIR) emitters and generally produce low resolution depth
images. However, a gradual increase in sensor resolution has been
observed over the last few years. ToF cameras produce high frame
rate (up to 50 fps) depth images and therefore, are highly suitable
for real-time applications. But the problem of lack of performance
under sunlight, still remains i.e. these sensors are guaranteed to
work only in indoor environments. Some of the ToF cameras have
an on-board background illumination rejection circuitry such as
PMD (Möller et al., 2005), but with varying performance under
sunlight depending on the operating range and the power of NIR
emitters.

The challenge in ToF cameras is to find a suitable integration
time (IT: a controllable parameter related to the time the sensor
spends integrating the returned signal) according to the ambient
illumination because a different calibration has to be applied for
each IT and the calibration is a costly process. For stereo vision,
the challenge is the performance and accuracy of the correspon-
dence algorithm and the effects of ambient illumination on the
accuracy of disparity map. Fig. 1 shows a comparison of working
principle and Fig. 2 of the data processing pipelines for both stereo
vision and ToF technologies.

In our previous work, we have evaluated the performance of
one ToF camera for close range leaf imaging (Kazmi et al., 2012).
But every ToF camera has different sensor properties and robust-
ness against background illumination. A qualitative comparison
of the response of several different ToF cameras with stereo vision
under indoor/outdoor illumination conditions, particularly for
agricultural purposes, is not available in literature. Such sensor
characteristics would be very helpful for analyzing the perfor-
mance of these sensors and weighing the cost of making a choice.

1.2. Objective

In this article, our objective is to estimate and compare the re-
sponse of ToF and stereo vision sensors for depth imaging of leaves
using some of the commonly used cameras. We will first review
their current applications in agriculture. Since a lot of literature
has addressed resolution and accuracy of stereo vision (e.g. Schar-
stein and Szeliski, 2002; Kytö et al., 2011) we will only provide a
short insight into the precision of ToF cameras.

We will introduce some metrics for qualitative evaluation of the
depth data. We also propose a method for obtaining the most suit-
able camera configurations for imaging under different illumina-
tion conditions. The method is based on observing the trends in
camera precision and detecting the non-linearities in the
amplitude. Additionally, we show that for ToF cameras, using this

Fig. 1. Comparison of stereo and ToF techniques.3
http://www.microsoft.com/en-us/kinectforwindows.
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