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a b s t r a c t

In this work we address the task of the contextual classification of an airborne LiDAR point cloud. For that
purpose, we integrate a Random Forest classifier into a Conditional Random Field (CRF) framework. It is a
flexible approach for obtaining a reliable classification result even in complex urban scenes. In this way,
we benefit from the consideration of context on the one hand and from the opportunity to use a large
amount of features on the other hand. Considering the interactions in our experiments increases the
overall accuracy by 2%, though a larger improvement becomes apparent in the completeness and correct-
ness of some of the seven classes discerned in our experiments. We compare the Random Forest approach
to linear models for the computation of unary and pairwise potentials of the CRF, and investigate the rel-
evance of different features for the LiDAR points as well as for the interaction of neighbouring points. In a
second step, building objects are detected based on the classified point cloud. For that purpose, the CRF
probabilities for the classes are plugged into a Markov Random Field as unary potentials, in which the
pairwise potentials are based on a Potts model. The 2D binary building object masks are extracted and
evaluated by the benchmark ISPRS Test Project on Urban Classification and 3D Building Reconstruction.
The evaluation shows that the main buildings (larger than 50 m2) can be detected very reliably with a
correctness larger than 96% and a completeness of 100%.
� 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.

1. Introduction

Automated urban object extraction from remotely sensed data
is a very challenging task due to the complexity of urban scenes.
There are different types of objects such as buildings, low vegeta-
tion, trees, fences, and cars, that can be found in a small local
neighbourhood, which makes it difficult to extract them reliably.
In order to handle this problem, research often focuses on the
extraction of a single object type, i.e. buildings, roads, and trees;
for overviews, cf. Mayer (2008) and Rottensteiner et al. (2012).

Airborne LiDAR (Light Detection And Ranging) is a particularly
useful technology for the acquisition of elevation data, with appli-
cations such as the generation of digital terrain models (DTM)
(Kraus and Pfeifer, 1998), data acquisition for forestry (Reitberger
et al., 2009), or power line monitoring (McLaughlin, 2006). LiDAR
data are also well-suited for automated object detection for the
generation of 3D city models. Building extraction is a prominent
application in this context; two recent examples are Huang et al.
(2013) and Liu et al. (2013).

For many applications a basic step in LiDAR processing is a clas-
sification of the point cloud. Each 3D point in the irregularly dis-
tributed point cloud is assigned to a semantic object class. Due to
the complexity of urban scenes this task is also difficult. It is the
goal of this paper to present an approach for the classification of
a LiDAR point cloud in urban areas without the use of image data
providing spectral information. The only radiometric signal feature
we have access to is the so-called intensity, which is a function of
the amount of photons collected by the scanning device. After the
classification, 2D building outlines are delivered from the labelled
point cloud.

1.1. Related work

In recent years research mainly focused on the use of super-
vised statistical methods for classification in remote sensing be-
cause they are more flexible to handle variations in appearance
of the objects to be extracted compared to model-based ap-
proaches. Besides generative classifiers modelling the joint distri-
bution of the data and labels (Bishop, 2006), modern
discriminative methods such as AdaBoost (Chan and Paelinckx,
2008), Support Vector Machines (SVM) (Mountrakis et al., 2011),
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and Random Forests (RF) (Breiman, 2001; Gislason et al., 2006) are
used. They usually lead to simpler models and need fewer training
data in relation to generative models. These classifiers are also ap-
plied to LiDAR processing tasks. For instance, Mallet (2010) used a
point-based multi-class SVM for the classification of full-waveform
(FW) LiDAR data, whereas Chehata et al. (2009) applied RF for that
purpose. However, both approaches classify each point indepen-
dently without considering the labels of its neighbourhood. This
is a drawback leading to inhomogeneous results in complex scenes
such as urban areas, as demonstrated for example in Niemeyer
et al. (2011). The reason is the diversity of objects’ appearances
even within a single scene. Especially in urban areas roofs of differ-
ent shapes and other challenging objects with many details occur,
leading to overlapping distributions of features within each class.
Shadows caused by other objects, missing data due to the objects’
properties, and random errors in the sensor data aggravate this ef-
fect. As a consequence, purely local decisions become uncertain.

An improvement can be achieved by incorporating contextual
information, which is an important cue for the classification of ob-
jects in complex scenes. Spatial dependencies between the object
classes can be trained to improve the results, because some object
classes are more likely to occur next to each other than others; for
instance, it is more probable that cars are situated on a street than
on grassland. A sound statistical model of context leads to undi-
rected graphical models (Bishop, 2006) such as Markov Random
Fields (MRF) (Geman and Geman, 1984). In an MRF, the class label
of an object is statistically dependent on its neighbours, whereas
the data of different objects are assumed to be conditionally inde-
pendent (Li, 2009). Conditional Random Fields (CRF) (Kumar and
Hebert, 2006) offer a more general model. They drop the assump-
tion of conditional independence of the data of different objects,
expressed in the model of the unary potentials linking the class la-
bels to the observations, and the interaction between neighbouring
objects is modelled to depend on both the labels and the data in
the pairwise potentials. CRFs have become a standard technique
for considering context in classification processes, in particular
for image classification (Kumar and Hebert, 2006; Schindler,
2012). They are also becoming more and more popular in the fields
of photogrammetry and remote sensing. Some exemplary applica-
tions are multi-temporal image classification (Hoberg et al., 2012),
building detection in radar images (Wegner et al., 2011), and clas-
sification of façade images (Yang and Förstner, 2011).

Applications of the CRF framework differ in the way they model
the potentials and in the definition of the graph structure. For the
unary potentials, the probabilistic output of a discriminative clas-
sifier is frequently used. Examples include linear models (Kumar
and Hebert, 2006) and RF (Schindler, 2012). For the pairwise
potentials, most approaches use relatively simple models favour-
ing identical labels at neighbouring sites by penalising label
changes, such as the Potts model. The contrast-sensitive Potts
model (Boykov and Jolly, 2001) has the same effect, but adapts
the degree of penalisation related to the Euclidean distance of
the feature vectors. Schindler (2012) carried out a comparison of
these smoothing models applied to high resolution images.
Although both methods perform rather well in the comparison,
these simple models tend to over-smooth the results. Thus, a more
complex model might improve the results at the cost of higher
computational efforts in training and of having to provide fully la-
belled training images. In Niemeyer et al. (2011) this was shown
for the classification of LiDAR data of urban areas. In this case, lin-
ear models were used for both the unary and the pairwise poten-
tials. In the latter case they were based on a multi-class model
for the joint probability of the class labels at neighbouring sites
rather than on a binary model for the probability of the two labels
being equal. Nowozin et al. (2011) use RF classifiers for both types
of potentials, also using a multi-class model for the interactions. In

their examples, the random field is constructed over a (radiometric
or depth) image grid. The neighbourhood system on which the
edges of the graphical model are defined may vary with the appli-
cation, but the interactions are restricted to pairs of nodes. Lucchi
et al. (2012) use a CRF based on structured SVM (SSVM), which in-
cludes an SVM model for the pairwise terms. In their case, the
graphical model is built on segments (superpixels), which reduces
the computational complexity compared to a pixel-based
classification.

Lucchi et al. (2011) have doubted the contribution of CRF-like
models for classification, showing that methods for classifying
superpixels and applying global features can achieve a similar per-
formance as CRF-based models in classification of standard data
sets. Their discussion is limited to images and to CRF-based models
involving neighbourhood terms that depend on the relative align-
ment of objects in an image. They also show the effects of global
constraints based on the co-occurrence statistics of objects in a
scene. We think that the type of geometrical pairwise model used
in Lucchi et al. (2011) (‘‘sky should appear above grass’’) is not appli-
cable to remote sensing images, because it requires the definition
of an absolute reference direction (e.g. the vertical in images hav-
ing a horizontal viewing direction). Of course, height differences
are important features in the context of point cloud classification,
but the relative alignment in planimetry follows a similar structure
as in aerial images. The benefits of using global energy terms such
as those based on co-occurrence statistics, also proposed in Ladický
et al. (2013), would also seem to be doubtful for the classification
of remotely sensed images. In the urban remote sensing case, we
usually have a small set of objects which always occur in a scene
together (e.g., roads, buildings, trees and cars), so that the global
information about their co-occurrence would not seem to carry
much discriminative power.

The first research on the context-based classification of point
cloud labelling was carried out in the fields of robotics and mobile
terrestrial laser scanning. Anguelov et al. (2005) proposed a classi-
fication of a terrestrial point cloud into four object classes with
Associated Markov Networks (AMN), a subclass of MRF. Neigh-
bouring points are assumed to belong to the same object class with
high probability, which leads to an adaptive smoothing of the clas-
sification results. In order to reduce the number of graph nodes,
ground points are eliminated based on thresholds before the actual
classification. Munoz et al. (2008) also used point-based AMNs, but
they extended the original isotropic model to an anisotropic one, in
order to emphasise certain orientations of edges. This directional
information enables a more accurate classification of objects like
power lines. Rusu et al. (2009) were interested in labelling an in-
door robot environment described by point clouds. For object
detection points are classified using CRFs according to the geomet-
ric surface they belong to, such as cylinders or planes. They applied
a point-wise classification method, representing every point as a
node of the graphical model. Compared to our application they
deal with few points (�80,000), and they even reduce this data
set by about 70% before the classification based on some restric-
tions concerning the objects’ positions. Shapovalov et al. (2013)
also classified point clouds in indoor scenes, building a graphical
model on point cloud segments. They consider long-range depen-
dencies by so-called structural links, also based on special direc-
tions such as the vertical, the direction to the sensor or the
direction to the nearest wall. In an indoor scenario, walls can be de-
tected using heuristics (Shapovalov et al., 2013). However, in the
airborne case, the number of points on walls is usually relatively
low. The classifications of points on walls might be one of the prob-
lems one would like to solve by a CRF-based model, and the verti-
cal and the direction to the sensor are nearly coincident. CRF were
also used by Lim and Suter (2007) for the point-wise classification
of terrestrial LiDAR data. They coped with the computational
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