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a b s t r a c t

Recently, the composite quadratic Lyapunov function has been extended to study of multi-agent systems,
leading to the so-called composite Laplacian quadratics (CLQs) function. Compared with quadratic
Lyapunov functions, the CLQs function can yield a larger convergence region and is particularly useful
in stabilization of multi-agent systems with complex dynamics, such as differential inclusions. In the
definition of the CLQs function, an optimal vector parameter plays a critical role in determining the value
of the CLQs function and in constructing stabilization laws derived from the CLQs function. This paper
focuses on the properties of the optimal parameter of the CLQs function. The uniqueness of the optimal
parameter is established. A distributed computation approach is further proposed, which is useful in
computing the optimal parameter. The robustness issue of the optimal parameter is also investigated for
a multi-agent system described by linear differential inclusions. Finally, a numerical example is provided
to validate the proposed theoretical results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, the function of composite Laplacian quadratics is
proposed for synthesis and analysis of multi-agent systems (Chen,
Xiang, & Ren, 2015), which can be seen as an extension of the
composite quadratic function (Goebel, Teel, Hu, & Lin, 2006; Hu &
Lin, 2004) to the study ofmulti-agent systems,where the Laplacian
matrix is introduced to describe the communication graph among
agents. The function is particularly useful in stabilization of multi-
agent systems whose dynamics are governed by linear differential
inclusions (LDIs), which can be used to model a wide class of
practical systems (Boyd, Ghaoui, Feron, & Balakrishnan, 1994).
It has been demonstrated that the CLQs function can yield a
larger stabilization region, as compared to that given by quadratic
Lyapunov functions (Hu, 2007). In addition, by the technique of
global linearization in Liu (1968) and Liu, Saeks, and Leake (1971),
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a nonlinear time-varying system can be transformed into an LDI
system, which suggests that the CLQs function can be employed
to stabilize nonlinear time-varying systems as well (Boyd et al.,
1994). The function is used to design a nonlinear consensus
algorithm for a multi-agent system (Chen et al., 2015), for which
consensus cannot be reached via linear algorithms designed under
the quadratic stabilization framework. Because consensus is the
basis for more involved cooperative control problems, the CLQs
function has potential applications in other cooperative control
problems of multi-agent systems such as distributed optimization
(Nedic & Ozdaglar, 2009; Sarlette & Sepulchre, 2009).

Construction of Lyapunov functions is one of the central tasks
in study of multi-agent systems. Lyapunov functions are not only
used for analysis of multi-agent systems, but also play a critical
rule in controller synthesis of multi-agent systems. One type of
quadratic functions that is commonly used is V (x) , xT (L ⊗ P)x,
where L is the Laplacian matrix of an undirected graph and P
is a positive definite matrix (Olfati-Saber & Murray, 2004; Ren
& Beard, 2008; Ren, Beard, & Atkins, 2007). Quadratic Lyapunov
functions can also be designed for multi-agent systems under
directed network topologies and various input or communication
constrains (Meng & Lin, 2014; Meng, Zhao, & Lin, 2013). Although
quadratic Lyapunov functions serve as a fundamental tool in
stability analysis and control synthesis, their limitations have been
revealed in some papers (Moreau, 2005; Ooba, 2003). Therefore,
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some non-quadratic Lyapunov functions have been proposed as
a complement of quadratic Lyapunov functions. The set-valued
Lyapunov function

Vconv , (conv{x1, . . . , xn})n,

is used inMoreau (2005) to analyze the convergence of a nonlinear
multi-agent model, where conv{x1, . . . , xn} denotes the convex
hull and (·)n denotes the Cartesian product. Different from the
quadratic Lyapunov function, the set-valued Lyapunov function
can be used to conclude that the state of the system converges to
one equilibriumout of a continuumof equilibria. Finally, it isworth
mentioning that other types of Lyapunov functions such as the
max–min function Vmax,min , max{x1, . . . , xn} − min{x1, . . . , xn}
(Cao, Ren, & Meng, 2010; Moreau, 2004) are also employed in the
literature for multi-agent systems.

As an extension of the composite quadratic function, the
CLQs function inherits a very good property of the composite
quadratic function, that is, it is continuously differentiable. This
property is particularly useful in constructing continuous control
laws from the CLQs. Note that a continuous control law, if
exists, is always preferable to a discontinuous control law due
to various considerations, such as avoiding the chattering effect.
The value of the CLQs function is normally determined by solving
an optimization problem, whose solution is given in terms of a
vector parameter. The optimal value of the vector parameter plays
a critical role not only in determining the value of the CLQs function
but also in designing the control law under the CLQs function.
The challenge of determining the optimal parameter is that the
parameter is time-varying and depends on the state of the system.
This implies that global information of the multi-agent system
is needed in determining the optimal parameter. This motivates
the problem of designing a distributed algorithm for determining
the optimal parameter. Moreover, the computation of the optimal
parameter needs time, which is not negligible for multi-agent
systems where communication is involved. One possible way to
solve the computational time issue is to use ‘‘out-dated’’ values of
the optimal parameter. The question is what is the upper bound
on the deviation of the ‘‘out-dated’’ values from the true value of
the optimal parameter that can be employed while guaranteeing
the stability of the resulting system. This motivates the robustness
issue of the optimal parameter of the CLQs function in controller
synthesis of multi-agent systems.

The contributions of this paper are stated as follows. First,
the uniqueness of the optimal parameter of the CLQs function is
established. Second, a distributed algorithm is proposed which
plays an important role in computing the optimal parameter of the
CLQs function and is necessary for the distributed implementation
of the control algorithm designed via the CLQs function. Finally,
the robustness issue of the optimal parameter is investigated for
a multi-agent system described by LDIs. It is proved that if the
calculation error of the optimal parameter is smaller than certain
upper bound, then consensus of the resulting controlled multi-
agent system can still be guaranteed even if the algorithm employs
an ‘‘inaccurate’’ value of the optimal parameter.

The rest of the paper is organized as follows. In Section 2, some
notations and mathematical preliminaries are introduced. The
uniqueness result of the optimal parameter of the CLQs function is
established in Section 3. Section 4 presents a distributed algorithm
for computing the optimal parameter of the CLQs function. The
robustness issue of the optimal parameter is discussed in Section 5.
A simulation example is then given in Section 6 to verify the
obtained result on the robustness of the optimal parameter.
Finally, Section 7 concludes this paper and gives some future
directions.

2. Preliminaries

Let R denote the set of all real numbers and R+ the set of all
positive real numbers. Let Rn denote the set of n-dimensional real
vectors andRm×n the set ofm×n realmatrices. Let In ∈ Rn×n be the
n-dimensional identity matrix, 0n ∈ Rn the vector with all zeros,
and 1n ∈ Rn the vector with all ones. Let ij ∈ Rn denote the vector
with all zeros, except that the jth entry is one. The subscripts of
In, 0n, and1n might be dropped if no confusion arises in the context.
For a vector x ∈ Rn, define ∥x∥ , (|x1|2 + · · · + |xn|2)1/2 and let
diag(x) ∈ Rn×n be the diagonal matrix constructed from x with
the elements in the main diagonal being the elements of x. For a

matrix A ∈ Rm×n, ∥A∥ ,


ρ

AAT


denotes its induced two-norm,

where AT is the transpose and ρ(·) is the spectral radius. The term
‘‘if and only if’’ is abbreviated as ‘‘iff’’. Let S be a compact convex set.
A point x0 ∈ S is an extreme point of S if it cannot be represented as
the convex combination of other points in S. A hyperplane cT x = k
is a supporting hyperplane of S at x0 ∈ ∂S if cT x ≤ k for all x ∈ S
and cT x0 = k, where ∂S denotes the boundary of S.

A graph is defined asG , (V, E), whereV is the set of nodes and
E ⊆ V × V the set of edges. A graph is simple if it does not contain
self-loops, nor have multiple edges between two nodes. Graph G is
undirected if, for all u, v ∈ V, (u, v) ∈ E ⇐⇒ (v, u) ∈ E . In this
paper, only simple and undirected graphs are considered. The order
and size of G are denoted, respectively, by n , |V| and m , |E |,
where | · | denotes the number of elements in a set. A path from
node v1 to node vk is a sequence of nodes v1, . . . , vk, such that for
each i, 1 ≤ i ≤ k − 1, (vi, vi+1) is an edge. A graph is connected if
there is a path from any node to any other node in the graph. Let
A , [aij] ∈ Rn×n be the adjacency matrix of G. The degree of node
i is defined as di ,

n
j=1 aij, and the degree matrix is defined as

D , diag([d1, . . . , dn]) ∈ Rn×n. The Laplacian matrix of G is then
given by L , D − A ∈ Rn×n. It can be verified that the Laplacian
matrix L is positive semi-definite, and has a zero eigenvalue whose
normalized eigenvector is (1/

√
n)1n.Without loss of generality, let

0 = λ1 ≤ λ2 ≤ · · · ≤ λn denote the n eigenvalues of L. Here, the
second-smallest eigenvalue λ2 is called the algebraic connectivity
of graph G, which is related to the connectivity of graph G by the
following lemma.

Lemma 1 (Godsil & Royle, 2001). The algebraic connectivity λ2 > 0
iff G is a connected graph.

For a symmetric blockmatrixX =


A B
BT C


, its Schur complement

is defined by A − BC−1BT if C−1 exists. The positive definiteness
(positive semi-definiteness) of the block matrix X can be verified
via its Schur complement.

Lemma 2 (Schur Complement, Boyd et al., 1994). For the symmetric
matrix X, the following holds

• X > 0 ⇐⇒ C > 0, A − BC−1BT > 0;
• X ≥ 0 ⇐⇒ C > 0, A − BC−1BT

≥ 0.

Let A(x) be an invertible matrix depending on a real parameter
x ∈ X ⊂ R. The following lemma shows how to calculate the
derivative of the inverse matrix A−1.

Lemma 3 (Horn & Johnson, 2012). Let B be amatrix such that ∥B∥ <

1, then the matrix (I + B) is invertible, and ∥(I + B)−1
∥ ≤

1
1−∥B∥ .
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