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In this paper, we introduce and discuss the Data-Driven Inversion-Based Control (D?-IBC) method for
nonlinear control system design. The method relies on a two degree-of-freedom architecture, with a
nonlinear controller and a linear controller running in parallel, and does not require any detailed physical
knowledge of the plant to control. Specifically, we use input/output data to synthesize the controller
by employing convex optimization tools. We show the effectiveness of the proposed approach on a

benchmark simulation example, regarding control of the Duffing system.
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1. Introduction

One of the most natural ways to force the output of a nonlinear
system to follow a given trajectory is to employ a feedforward
controller described by the inverse of the system dynamics. When
fed by the reference trajectory, the output of such a controller
will correspond exactly to the desired input of the system, i.e. the
input signal producing an output sequence equal to the reference
one. Unfortunately, such an ideal controller is not computable
and/or applicable in most practical cases. The problems can
be many, e.g. the system dynamics is not invertible, there are
unstable zero dynamics, the model of the plant is not an accurate
description of all the underlying dynamics, the plant is affected by
noises/disturbances, or other application-specific issues.

The above observations led - for some classes of systems -
to the well-known feedback linearization approach (Isidori, 1995;
Khalil, 1996), where the objective of the nonlinear controller is
milder, i.e. the controller is no longer required to fully invert
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the system dynamics, but only to linearize it around the current
operating point. Nevertheless, such an approach suffers from some
critical drawbacks, too. First of all, only input affine systems can
typically be dealt with (Isidori, 1995; Khalil, 1996). Secondly, such
an approach is still very sensitive to model errors, which may
jeopardize the performance but also destabilize the system, when
implemented in a real-world setup.

In the last decades, these premises have produced several
research directions with the aim to overcome the limits of the
above (appealing) approaches for control of nonlinear systems.
Among the others, the most common activities in the field are:
approximate linearization via feedback (Guardabassi & Savaresi,
2001), feedforward linearization (Hagenmeyer & Delaleau, 2003),
robust feedback linearization (Marino & Tomei, 1996), model
predictive control (Mayne, Rawlings, Rao, & Scokaert, 2000),
identification for control (Gevers, 2005) and direct data-driven
control (Novara, Fagiano, & Milanese, 2013; Radac, Precup, Petriu,
Preitl, & Dragos, 2013).

Unlike the others, identification for control and direct data-
driven control approaches do not (intrinsically) require an accurate
physical model of the system to control, because in the former
perspective only the main dynamics of interest for control are
accounted for, and in the latter approach the controller is directly
computed from experimental measurements.

Concerning identification for control, a lot of work has been done
to highlight what are the properties a model should have to be
suitable for model-based control. In this field, a significant insight
has been obtained into what is the most proper experimental setup
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(Hjalmarsson, Gevers, & De Bruyne, 1996) and how robustness
should be taken into account in the design of the identification
procedure (Gevers, 1994). As far as we are aware, such an analysis
has been carried out for linear systems only.

Another interesting change of perspective is that of direct de-
sign of controllers from data, which obviously offers a great po-
tential against undesired modeling errors, but also offers new
theoretical challenges to the systems and control community. In
this field, a lot of work has already been done, ranging from the
Ziegler and Nichols method (Ziegler & Nichols, 1942) to Virtual
Reference Feedback Tuning (VRFT Campi, Lecchini, & Savaresi,
2002; Formentin, Savaresi, & Del Re, 2012) until the recent data-
driven loop-shaping approach (Formentin & Karimi, 2013). How-
ever, only few contributions have focused on nonlinear systems.
Among these, neural networks have played a major role, see e.g.
Polycarpou (1996) and Yesildirek and Lewis (1995). Notwithstand-
ing their evident general applicability, these methods are hard to
implement from a practical point of view, due to the lack of cri-
teria for optimal network selection. Since the related optimization
problems are typically non-convex, there is also no guarantee that
the resulting controller corresponds to the optimal one.

The nonlinear version of the VRFT method (Campi & Savaresi,
2006) represents an effective tool to make the nonlinear system
behave like a desired linear reference model, using convex
optimization only. Although the idea behind the method sounds
natural and appealing, the approach in the current form is not
able to guarantee a certain level of performance, when the system
moves far from the input trajectory of the identification data set.
Instead, with the recent Direct Feedback approach (DFK Novara
et al., 2013), a stabilizing controller can be computed, which can
also guarantee that the norm of the tracking error is bounded,
under some assumptions on the identification data set and solving
only convex problems. Specifically, the DFK controller aims to be
the data-driven counterpart of the model-driven inversion-based
controller, but without needing any assumption on the model
parametrization. However, the DFK approach may not be suitable
for the control of systems described by a regression function that is
non-invertible (non-injective) with respect to the command input
(this limitation is common to many methods, including feedback
linearization). Also, DFK is based on full-state feedback and its
extension to the output feedback case has not been systematically
developed yet.

In this paper, we propose a novel approach called Data-Driven
Inversion-Based Control (D?-IBC), which exploits the main ideas
in identification for control and direct data-driven controller
tuning. The method is developed within the same mathematical
framework of DFK, but without the above limitations and with
enhanced tracking performance guarantees. More specifically, the
main innovative features of this approach are as follows: (i) D?-
IBC relies on a two degree-of-freedom architecture, composed by
a nonlinear controller and a linear controller in parallel, allowing
both compensation of nonlinearities and performance boosting;
(ii) it extends the identification for control rationale to nonlinear
systems: here, a nonlinear model is selected depending on its
suitability for control design, whereas the matching of the open-
loop dynamics is considered less important;? (iii) a novel nonlinear
control design method based on the above identified model is
used to design the nonlinear control block; this method, called
Nonlinear Inversion Control (NIC), was (partially) published in the
technical report (Novara & Milanese, 2014); (iv) since the design

2 Notice that - concerning the identification part - this contribution is different
from that of Novara et al. (2013), where the open-loop dynamics is skipped and the
controller is directly identified from data.

3 This approach shares some features with nonlinear Model Predictive Control
(MPC). The main differences between the two approaches will be discussed at the
end of the paper.

of the linear controller involves the dynamics of an unknown input
sensitivity function, a direct data-driven method is used to design
the linear control block: the method is the well known VRFT, but it
is adapted to the architecture at hand.

We should remark that, in this work, we focus only on SISO
systems. The MIMO extension is not straightforward and is object
of current research.

The remaining part of the paper is as follows. The general princi-
ples behind the D?-IBC approach are discussed in Section 2, where
also a theoretical result is given, motivating the proposed two
degree-of-freedom architecture. The specific design algorithms are
presented in Section 3, while their effectiveness is assessed on a
benchmark simulation example in Section 4. A comparison with
the state of the art techniques and some concluding remarks are
given in Section 5.

Notation. A column vector x € R™*! is denoted as x = (x, ...,
Xny). A Tow vector x € R"™™ is denoted as x =[x, ..., Xy | =

X
(x1,..., xnx)T, where T indicates the transpose.

A discrete-time signal (i.e. a sequence of vectors) is denoted
with the bold style: ¥ = (x1,xz,...), where x;, € R™*! and
t = 1,2,...indicates the discrete time; x;  is the ith component
of the signal x at time t.

A regressor, i.e. a vector that, at time t, contains n present and
past values of a variable, is indicated with the bold style and the

time index: X = (X¢, ..., Xr—n+1)-
The €, norms of a vector x = (X1, ..., X,, ) are defined as
1
Ny b
”X” - (Z |Xi|p> 5 p <00,
p i=1
max |x;|, p = o0.
1

The £, norms of a signal ¥ = (x4, X2, . . .) are defined as

o ’
(zgxi,m’) pece
t=1 i=1

max |x;| ,
it

%I, =
p =00,

where x;; is the ith component of the signal x at time ¢. These
norms give rise to the well-known £, Banach spaces.

2. The D?-IBC approach

2.1. Problem setting

Consider a nonlinear discrete-time SISO system in regression
form:

Y+ =g(.}’t7"t,§r) (M
Vo=t Yeont1)
ur = (Up, ..., Ur_py1)
Et = (‘Er, ---’gt—n+l)

where u; € U C R is the input, y; € R is the output, & €
g = [-£,&]™ c R™ is a disturbance including both process
and measurement noises, and n is the system order. U and &
are compact sets. In particular, U = [u, u] accounts for input
saturation.

Suppose that the system (1) is unknown, but a set of
measurements is available:

D = {ﬂf’yt}?:l—L (2)

where i, € U,y € Y,Y = [—y,y] and y = max, |[y;| < oo. The
tilde is used to indicate the input and output samples of the data
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