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a b s t r a c t

Wepropose a robust self-triggered control algorithm for constrained linear discrete-time systems subject
to additive disturbances based on MPC. At every sampling instant, the controller provides both the next
sampling instant, as well as the inputs that are applied to the system until the next sampling instant. By
maximizing the inter-sampling time subject to bounds on the MPC value function, the average sampling
frequency in the closed-loop system is decreasedwhile guaranteeing an upper bound on the performance
loss when compared with an MPC scheme sampling at every point in time. Robust constraint satisfaction
is achieved by tightening input and state constraints based on a TubeMPC approach.Moreover, a compact
set in the state space, which is a parameter in the MPC scheme, is shown to be robustly asymptotically
stabilized.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

For control systemswhere the communication between system
and controller constitutes a considerable effort in terms of energy
or infrastructure, the performance of the control system must
be weighed against the amount of communication necessary to
achieve this performance. In this context, it has been found that
controllers with aperiodic scheduling of input and measurement
updates may achieve a better trade-off between performance
and overall communication load than controllers with periodic
scheduling, see for example Heemels, Johansson, and Tabuada
(2012) and You and Xie (2013) and the references therein. In
particular, event-triggered and self-triggered control schemes have
been proposed, where in the first class of controllers a new
input is computed and communicated to the system only if
certain conditions on the state of the system are met (defining
an ‘‘event’’), and in the second class the next update time is
calculated explicitly at the current update time based on the
current state of the system. The main difference between the
two classes of controllers is that event-triggered control requires
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periodic or continuous measurement of the system state (or
output) while in self-triggered control the sensors may be shut
down completely betweenupdates. For a recent overviewof event-
triggered and self-triggered control we refer the interested reader
to Heemels et al. (2012). While self-triggered control schemes
have the advantage of requiring overall less information from the
system in general, this advantage at the same time makes these
schemesmore susceptible to disturbances and uncertainties when
compared to event-triggered control schemes.

In this paper, we present a robust self-triggered MPC method
based on ideas from Tube MPC (Chisci, Rossiter, & Zappa, 2001;
Langson, Chryssochoos, Raković, & Mayne, 2004). MPC is a control
methodwhere the control input at each sampling instant is defined
as the first part of the solution of a finite-horizon optimal control
problem. MPC is especially suited for setups with hard constraints
on the input and states, as these constraints can be explicitly
taken into account in the definition of the optimization problem.
For an overview of MPC, please refer to Mayne (2014), Mayne,
Rawlings, Rao, and Scokaert (2000) and Rawlings and Mayne
(2009). For linear time-invariant systems subject to bounded
additive disturbances, TubeMPC has proven to be an effective way
of robustifying MPC. Tube MPC is based on set-valued predictions
of the state and input of the system taking the effect of the
disturbances into account. A key ingredient in Tube MPC is the
assumption that feedback is present at every point in time, reducing
the effect of the disturbances and thereby restricting the growth
of the predicted sets (Chisci et al., 2001). In the present work, the
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assumption of feedback at every point in time is not satisfied as
we are explicitly designing controllers with extended periods of
open-loop control. This limitation leads to a stronger growth of
the uncertainty in the prediction. However, it holds that feedback
will be present at some time in the future which still restricts the
growth of the uncertainty in the predictions, as we will see. This
knowledge is used in the construction of the tightened constraint
sets, which extend those employed in Chisci et al. (2001). An
additional challenge when adapting Tube MPC methods to a self-
triggered setup is the fact that the asymptotic bound on the
system state depends on the times between control updates,
which are determined online. In standard Tube MPC, the times
between control updates are uniform. We address this problem
by carefully designing the MPC cost function and determining
the times between control updates according to the evolution
of this function. This enables us to provide an offline a priori
asymptotic bound on the system state which is also a tuning
parameter of the MPC scheme. Note that in Eqtami (2013), and the
references therein, robust event- and self-triggered MPC schemes
are proposed based on tubes where no feedback is assumed
in the predictions. For open-loop unstable systems this has the
drawback of leading to an exponential growth of the predicted
uncertainty, thereby imposing an upper bound on the maximal
prediction horizon if state constraints are present and reducing the
feasible region of the MPC scheme. Inspired by Barradas Berglind,
Gommans, and Heemels (2012) and Gommans, Antunes, Donkers,
Tabuada, and Heemels (2014), the self-triggered controller in
the present paper maximizes, at each sampling instant, the time
until the next sampling instant subject to constraints on the
associatedMPC cost function and addresses thementioned issue of
exponentially growing uncertainty under open-loop predictions.
These constraints on the MPC cost will enable us to prove that
the cost of our new self-triggered MPC scheme is bounded by
the cost associated with the solution of a standard periodically
triggered MPC scheme multiplied by a positive factor which is a
tuning knob of our scheme. Another tuning knob is the size of
the set that is robustly stabilized. As a consequence, the proposed
self-triggered MPC scheme allows trade-offs between closed-loop
performance, the asymptotic bound on the system state, and the
average communication rate.

AlternativeMPC-based self-triggered control schemes are avail-
able. In Henriksson (2014) and Henriksson, Quevedo, Sandberg,
and Johansson (2012), an MPC scheme for undisturbed systems
is considered, where the sampling rate is part of the MPC cost
function. In Antunes and Heemels (2014), an optimization-based
scheme is proposed where at each sampling instant the input is
decided by selecting an optimal scheduling sequence with respect
to a quadratic cost function. Note that both Barradas Berglind et al.
(2012), Henriksson (2014) and Henriksson et al. (2012) do not con-
sider disturbances, while Antunes and Heemels (2014) and Gom-
mans et al. (2014) consider disturbances but no constraints on
the state or input. In Kögel and Findeisen (2014), a self-triggered
scheme for disturbed systems under constraints was presented
based on robust control-invariant sets. However, neither stability,
nor performance is addressed. In earlier results on self-triggered
MPC for disturbed systems (Aydiner, 2014; Brunner, Heemels, &
Allgöwer, 2014), the asymptotic bound depended on the opti-
mal MPC cost function, which is usually not easily obtainable. In
Aydiner, Brunner, Heemels, and Allgöwer (2015), a robust self-
triggered MPC scheme based on Raković, Kouvaritakis, Findeisen,
and Cannon (2012) was presented, which allows a similar a priori
determination of the asymptotic bound, while employing a con-
ceptionally differentway of describing the uncertainties in the pre-
diction. The MPC schemes proposed in Eqtami (2013) allow an a
priori determination of the guaranteed asymptotic bound in the
form of an ellipsoidal set, which is a conservative restriction for
the linear systems considered in the present paper.

The remainder of the paper is structured in the following
way. Some notes on notation and some preliminary results and
definitions are given in Section 2. The problem setup is stated
in Section 3. In Section 4, a Tube MPC optimization problem
is defined, where the first steps in the prediction horizon are
assumed to be applied in an open-loop fashion. The main results
of the paper are given in Section 5, where the robust self-triggered
scheme and its properties are presented. Section 6 contains some
notes on the implementation and the complexity of the algorithm.
Section 7 concludes the paper.

For the sake of readability, most of the proofs are located in the
Appendix.

2. Notation and preliminaries

LetNdenote the set of non-negative integers. For q, s ∈ N∪{∞},
let N≥q and N[q,s] denote the sets {r ∈ N | r ≥ q} and {r ∈ N |

q ≤ r ≤ s}, respectively. The set of non-negative real numbers is
denoted by R+. For n ∈ N, In denotes the n × n identity matrix. A
matrix with zero entries is denoted by 0, where the dimension is
defined by context. Given sets X, Y ⊆ Rn, a scalar α, and matrices
A ∈ Rm×n, B ∈ Rn×m we define αX := {αx | x ∈ X}, AX :=

{Ax | x ∈ X}, and B−1X := {x ∈ Rm
| Bx ∈ X}. The Minkowski

set addition is defined by X ⊕ Y := {x + y | x ∈ X, y ∈ Y}.
Given a vector x ∈ Rn we define X ⊕ x := x ⊕ X := {x} ⊕ X.
The Pontryagin set difference (Kolmanovsky & Gilbert, 1995, 1998)
is defined by X ⊖ Y := {z ∈ Rn

| z ⊕ Y ⊆ X}. Given a
(finite or infinite) sequence of sets Xi for i ∈ N[a,b] with a ∈ N

and b ∈ N ∪ {∞}, we define
b

i=a Xi :=

b
i=a xi | xi ∈ Xi


. By

convention, the empty sum is equal to {0}. Similarly, for any vectors
vi ∈ Rn, i ∈ N, we define

b
i=a vi = 0 for any a, b ∈ N if a > b.

We call a compact, convex set containing the origin a C-set. A C-set
containing the origin in its (non-empty) interior is called a PC-set.
A function α : R+ → R+ belongs to class K if it is continuous,
strictly increasing and α(0) = 0. If additionally α(s) → ∞ as
s → ∞, α is said to belong to class K∞. The Euclidean norm of
a vector v ∈ Rn is denoted by |v|. Given any compact set S ⊆ Rn,
the distance between v and S is defined by |v|S := mins∈S |v − s|.
The convex hull of a set X ⊆ Rn is denoted by convh(X). Define
finally the Euclidean unit ball by B := {x ∈ Rn

| |x| ≤ 1}.

Lemma 1. Let X, Y, Z ⊆ Rn be compact convex sets. Let further
A ∈ Rm×n. Then it holds that X ⊕ Y = Y ⊕ X, X ⊖ (Y ⊕ Z) =

(X⊖Y)⊖Z, (X⊕Y)⊖Y = X, (X⊖Y)⊕Y ⊆ X, A(X⊕Y) =

AX ⊕ AY, and A(X ⊖ Y) ⊆ (AX ⊖ AY).

Next, we define stability properties of dynamical systems subject
to disturbances of the form

(x⊤

k+1, z
⊤

k+1)
⊤

= f (xk, zk, wk), (1)

where f : Rn
× Rp

× W → Rn, k ∈ N, are given, and xk ∈ Rn and
wk ∈ W ⊆ Rn, are the state and disturbance at time k ∈ N, and
zk ∈ Rp is an internal state of the controller with z0 = 0.

Definition 2 (Robust Lyapunov Stability of Sets). A set Y ⊆ Rn is
robustly Lyapunov stable for System (1) if there exist a K-function
γ and a δ > 0 such that for any initial condition x0 ∈ {x ∈ Rn

|

|x|Y ≤ δ} and any disturbances with wk ∈ W, k ∈ N, it holds that
|xk|Y ≤ γ (|x0|Y) for all k ∈ N.

Definition 3 (Robust Asymptotic Stability of Sets). A set Y ⊆ Rn is
robustly asymptotically stable for System (1)with X̂ ⊆ Rn belonging
to its region of attraction if it is robustly Lyapunov stable for this
system and limk→∞ |xk|Y = 0 for all x0 ∈ X̂, and any disturbances
with wk ∈ W, k ∈ N.
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