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a b s t r a c t

We consider distributed optimization problems of large-scale dynamic systems where the global cost is
the sum of all individual costs of subsystems which are only known to the associated agent. To solve this
problem, a distributed simultaneous perturbation approach (D-SPA) is proposed based on simultaneous
perturbation techniques as well as consensus theory. The proposed method is model-free so long as all
individual costs can be measured and requires little knowledge on the coupling structure of the problem
to be optimized. The convergence of the proposed scheme is proved using singular perturbation and
averaging theory. In particular, with proper choice of the parameters under design, we show that the
proposed scheme is able to converge to the neighborhood of the Pareto optimum of the problem so long
as the energy of perturbation signals is sufficiently small. Moreover, the proposed approach is applied
to a simulated offshore wind farm for energy maximization and a comprehensive comparison with the
existing state-of-the-art technique is made to illustrate its effectiveness.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Distributed optimization has recently been receiving much
attention due to its wide applications in areas such as formation
control, resource allocation and wireless communication, to name
a few. This technique is especially suitable for large-scale problems
as it only requires local resources (e.g., local sensing, local
communication and local control in Networked Control Systems
Baillieul & Antsaklis, 2007) for achieving global results.

In the existing literature, gradient-based methods are widely
employed to solve large-scale optimization problems in a dis-
tributed way. In particular, Tsitsiklis, Bertsekas, and Athans (1986)
first studied the distributed gradient-like optimization algorithm
in which a bunch of processors perform computations and ex-
change messages asynchronously intending to minimize a certain
cost function. In the context of distributed computation, consen-
sus mechanism lends itself to distributed implementation of al-
gorithms as it allows agents to obtain global results by taking
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actions asynchronously and communicating limited information
with its neighbors even over varying communication topology
(Olfati-Saber, Fax, & Murray, 2007). In line with these works,
Nedic and Ozdaglar (2009) applied consensus theory to multi-
agent optimization problems where each agent only knows its
cost, resulting in distributed sub-gradient methods which can ac-
commodate varying communication topology. Zanella, Varagnolo,
Cenedese, Pillonetto, and Schenato (2011) solved the same uncon-
strained optimization problem by distributing the conventional
Newton–Raphson algorithm using consensus-like strategies. Two
drawbacks of these kinds of methods are that the communica-
tion cost will increase with the dimension of the problem to be
optimized and the gradient should be computable exactly for op-
timization. Dual decomposition has also been used to solve large-
scale optimization problems (Bertsekas, Nedic, & Ozdaglar, 2003).
Rather than directly dealing with the primal problem, this method
solves the dual counterpart which can be further divided into sev-
eral small sub-problems that are relatively easy to solve. Examples
include formation control (Raffard, Tomlin, & Boyd, 2004), multi-
agent optimization (Terelius, Topcu, &Murray, 2011), networkutil-
ity maximization (Low & Lapsley, 1999) and resource allocation
(Xiao, Johansson, & Boyd, 2004). This technique, however, requires
the cost function to be separable for efficient gradient calculation
and needs to consider the specific coupling topology to decouple
the problem.

For problems in which gradients may not be available, we
have to resort to some gradient approximation approaches.
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Instead of using the true gradient, one can solve the optimization
problem by using the pseudo-gradient estimated from probing the
system using perturbation techniques. One promising approach is
extremum seeking control (ESC) which has been widely employed
to optimize systems without knowing their specific reference-
to-output equilibrium map (Ariyur & Krstic, 2003). In this work,
we are particularly interested in the distributed implementation
of ESC, termed as D-ESC. Existing applications of D-ESC include
mobile sensor networks (Stankovic, Johansson, & Stipanovic, 2012)
and non-cooperative game (Frihauf, Krstic, & Basar, 2012). Since
they only considered non-cooperative games, their results are
of Nash Equilibrium (Basar & Olsder, 1999), which is a sub-
optimal solution. In order to obtain the global optimum (i.e.,
Pareto-efficient solution), Kvaternik and Pavel (2012) incorporated
consensus protocols into extremum seeking algorithms. However,
there is no explicit explanation on how to obtain the gradient
information using certain probing technique which is crucial for
implementation. In our previous work, we have also developed a
preliminary version of D-ESC schemewhich takes into account the
constraints but the proposed scheme needs to explicitly consider
the physical interaction topology among agents which is not
practical especially in dynamically changing environment (Xu &
Soh, 2013). Though extremum seeking control has a long history
(Tan, Moase, Manzie, Nešić, & Mareels, 2010), the rigorous proof of
its stability of the general form is given only recently by Krstic and
Wang (2000) for local results and Tan, Nešić, and Mareels (2006)
for non-local results using singular perturbation and averaging
analysis. It is claimed that their stability results can be extended
without much effort to multi-variable extremum seeking control
as done in Rotea (2000).

In this paper, we propose a new approach for solving large-
scale dynamic optimization problems by resorting to simultaneous
perturbation (Spall, 1998; Zak et al., 2004) and consensus theory.
In particular, we consider a distributed optimization problem
where agents are collaborating to seek the optimum of the sum
of individual costs which can be measured and known only by
the associated agent. In this approach, each agent is assumed
to update only a subset of the components of the global vector,
which is desirable in cases where only local action can be
taken. The proposed scheme, termed as distributed simultaneous
perturbation approach (D-SPA), is model-free (derivative-free)
and, different from most existing literature, only requires little
knowledge regarding the dimension of the system as well as
the underlying coupling structure of the problem. Thus, our
scheme has the potential to adapt to changing environments so
long as it is slow enough. In addition, it is envisioned that the
favorable properties of consensus algorithms are preserved, such
as allowing for asynchronous implementation. In each iteration of
the algorithm, regardless of the dimension of the problem, only
littlemeasurement data is transmitted for coordination. Moreover,
we will show that the D-SPA scheme is able to obtain Pareto-
optimum,which takes into account the interest of the adversary, in
a distributedmannerwith a gap of the same order of the rootmean
square (RMS) amplitude of perturbation signals. In all, the D-SPA
scheme is especially suitable for problems where we do not have
much knowledge, e.g., wind farm system where the aerodynamic
interactions among turbines are difficult to model. However, the
drawback of gradient-free techniques is their slow convergence
speed. Some extensions can be made to overcome this issue, e.g.,
Newton-basedmulti-variable extremum seeking control (Ghaffari,
Krstic, & Nešić, 2012).

Notation. We denote by xi the ith component of a vector x. A
variable x without subscript, unless stated otherwise, is viewed
as the collection of xi and written as x = [x1, x2, . . . , xn]T . In
addition, we use 1 to denote the all-ones column vector with

proper dimension, ⊙ the Hadamard(component-wise) product, ⊗
the Kronecker product, ◦ the composition of functions,R≥0 the set
of non-negative reals and ∥·∥ the Euclideannormof vectors and the
induced norm of matrices. Moreover, we say an error e of certain
dimension is of order O(ε) if ∥e∥ ≤ kε, where k is some positive
constant and ε is a small positive scalar. A continuous function
γ : R≥0 → R≥0 is of class K if it is strictly increasing and
γ (0) = 0. It is of class K∞ if it is of class K and γ (r) → ∞ as
r → ∞. A continuous function κ : R≥0 × R≥0 → R≥0 is of class
KL if, for each s ≥ 0, κ(r, s) is of class K w.r.t. r and, for each
r ≥ 0, κ(r, s) is decreasing w.r.t. s and goes to zero as s → ∞. A
function is said to be of class Ck if all of its partial derivatives to
k orders exist and continuous. Whenever the context is clear, we
may suppress the arguments of a function for compact expression.

2. Problem setting

2.1. Preliminaries

To facilitate the analysis in the sequel, we give the formal
definitions of Nash Equilibrium (Basar & Olsder, 1999) and Pareto-
optimum (Marler & Arora, 2004) for an N-player nonzero-sum
game (Θ, J) where Θ = Θ1 × Θ2 · · · × ΘN is the set of strategy
profiles with Θi denoting the strategy set for player i ∈ V :=

{1, 2, . . . ,N} and J = [J1(θ), J2(θ), . . . , JN(θ)]T is the cost function
for θ ∈ Θ .

Definition 1 (Nash Equilibrium). A strategy profile θ∗
= [θ∗

1 , θ
∗

2 ,

. . . , θ∗

N ]
T

∈ Θ with θ∗

i ∈ Θi, i ∈ V is said to constitute a
Nash equilibrium solution for an N-player nonzero-sum game if
the following conditions hold

Ji(θi, θ∗

−i) ≥ Ji(θ∗

i , θ
∗

−i), ∀θi ∈ Θi, i ∈ V

where θ∗

−i denotes the strategies of all other players.

Definition 2 (Pareto-Optimum). A strategy profile θ∗
= [θ∗

1 , θ
∗

2 ,

. . . , θ∗

N ]
T

∈ Θ with θ∗

i ∈ Θi, i ∈ V is said to constitute a Pareto-
optimal solution for an N-player nonzero-sum game if there does
not exist another strategy θ ∈ Θ such that Ji(θ∗) ≥ Ji(θ), ∀i ∈ V
and Jk(θ∗) > Jk(θ) for at least one player k ∈ V .

Remark 3. The most common way to obtain the Pareto-optimal
solution is using the weighted sum method, i.e., minimizingN

i=1wiJi(θ), which admits a unique solution and is sufficient for
achieving Pareto optimality (Marler & Arora, 2004). In addition, if
one player can losslessly transfer part of its cost to another player
(e.g., they have a common currency to evaluate their cost), thenwe
can simply optimize their sum for Pareto-optimality.

Definition 4 (USPAS (Nešić & Teel, 2001)). The parameterized
system ẋ = f (t, x, ε) is said to be uniformly semi-globally
practically asymptotically stable2 (USPAS) on ε if there exists κ ∈

KL and, for each pair of strictly positive numbers (∆, δ), there
exists a real number ε∗

= ε∗(∆, δ) > 0 such that for all initial
condition x0 with ∥x0∥ ∈ ∆ and for each ε ∈ (0, ε∗), we have
∥x(t)∥ ≤ κ(∥x0∥ , t − t0)+ δ,∀t ≥ t0 ≥ 0.

2 In the sequel, the stability of a given dynamic system is stated with respect to
its equilibrium.
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